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Abstract 

 

In European white oaks (Quercus spp.), species delimitation is not trivial because of the large overlap of 

morphological characteristics, which are likely due to hybridization of these species. Here, I evaluate the 

feasibility of several machine learning methods for accurately predicting oak tree species based on 

morphological and molecular data. The best machine learning model according to the 10-fold cross-

validation misclassification rate, correctly assigned the species in 90 % of the individual oak trees. In 

conclusion, machine learning techniques can be useful in identifying oak tree species based on 

morphological and molecular data. 
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1 Background 
!
!
Species identification and delimitation in the most common European white oaks Quercus petraea, Quercus 

pubescens and Quercus robur is subject to debate because of the large overlap of morphological 

characteristics (e.g. leaf related characteristics), which in turn are likely due to intraspecific hybridization 

[1]. Morphological variation in mixed oak stands (relatively homogeneous tree communities) composed of 

Q. petraea, Q. robur and Q. pubescens and consequently the ability to distinguish between the species is of 

general interest in Europe. Hence, the need for reliable methods for oak trees species spans a wide range of 

domains, from real-world applications to research. Foresters need out-of-box morphological screening 

methods, dendrologists could make use of classification criteria for taxonomic purposes, whereas biologists 

and ecologists focus on finding traits which could be used for studying introgression between these species 

known to hybridize [2]. 

Significant efforts have been devoted over the years to define reliable morphological traits to be assessed 

together with the appropriate statistical methods to analyze such data [2]. More recently, molecular 

techniques, potentially able to distinguish intermediate morphologies occurring due to intraspecific 

hybridization, have been used to assist species identification [1]. Yet, there is no consensus method to date 

that is widely applied to delineate oak tree species. Multivariate statistical analyses of leaf morphological 

characters and molecular markers were shown to contribute to a better species assignment in European 

white oaks. Furthermore, model-based approaches using exclusively molecular markers data was sufficient 

to provide a satisfying congruency in species assignment [1]. To date, machine learning (ML) methods 

have not been used to predict species assignment based on morphological and molecular data in white oak 

trees. 

Here, I evaluate several statistical machine learning methods for their capacity to reliably predict species 

assignment in European white oaks (Q. petraea, Q. pubescens, Q. robur). The data set was provided by 

Rellstab et al. and consisted of the variable measurements for 1,369 individual oak trees from 71 populations 

sampled across Switzerland [1]. I assessed seven ML methods with three sets of variables: morphological, 

molecular and combined. To evaluate the ML model performance, I used the misclassification rate 

estimated in a 10-fold cross-validation procedure. A schematic workflow of this analysis is shown in Figure 

1. 
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Figure 1. Schematic representation of the data analysis workflow, which shows the structure of the data and the 

analytical approach. The data set consists of 1,369 individual oak trees and their measured morphological and 

molecular variables (additional available variables, e.g. geographical location, are not shown). Almost 60 % of the 

individual observations could be assigned to one of the three species based on the leaf trichome profiles (see Statistical 

Methods and Results) and is interchangeable referred here to as "labelled data set" or "training and test data set". The 

ML models are trained on the labelled data set. To estimate ML model`s performance, 10-fold CV is used: at each of 

the 10 iterations, 1/10 of the labelled data set is used as "test data" and the remaining 9/10 constitutes the "training 

data". The splitting of the data is random with1/10 or the "test data" occurring randomly at different location within 

the labelled data set, indicated by the magenta lines. The species for the remaining 40 % of the data (interchangeable 

referred here to as "unlabelled data set” or "new data set") are predicted based on the best performing models. 

 
I begin the Data section with an exploratory data analysis followed by data preprocessing as a prerequisite 

step for ML data input. Next, in the Statistical Methods and Results section I describe and summarize the 

ML models that have been trained and evaluated by 10-fold cross-validation for their performance to 

accurately predict the oak trees species assignment. Based on the best performing models (according to the 

misclassification rate) I show the species prediction results for the oak trees without taxon identification 

information. Finally, I display graphically the species composition (“known” based on the available 

trichome profiles and “ML-predicted” based on the best ML models) of the 71 oak tree populations onto 

the map of Switzerland, providing support in evaluating which oak tree population are likely mixed and 

therefore prone to hybridization. Finally, I conclude that the LDA and Neural Networks are the best 

performing ML models on this data set, correctly assigning the species in 90 % of the cases. Hence, ML 

methods have good potential to be used as tool for reliable prediction of oak trees species. 
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2 Data 
 

The data set used in this thesis was provided by Dr. C. Rellstab (WSL, Swiss Federal Institute for Forest, 

Snow and Landscape Research) and consists of morphological and molecular measurements for 1,369 trees 

of 71 (pure and mixed) oak trees populations sampled across Switzerland [1]. Covering a wide range of 

morphological characteristics, this data set provides seven relative (size independent) leaf parameters: 

lamina shape or obversity (OB), petiole ratio (PR), lobe depth ratio at first lobe (LDR), lobe depth ratio at 

widest lobe (LDRW), percentage of venation (PV), lobe width ratio (LWR), lobe number ratio (LNR). 

Additionally, the basal shape of the lamina (BS) is provided. Furthermore, the presence or absence of the 

following trichome types (leaf hair) is available: laminal (leaf blade) stellate trichomes (LS), clustered 

trichomes on the lamina (LC), intermediate (between stellate and clustered) trichomes on the lamina (LI), 

stellate trichomes on the leaf vein (VS), and clustered trichomes on the leaf vein (VC). The molecular 

variables are the principal components scores (PCo1 to PCo6) obtained based on the pairwise co-dominant 

genotypic distances analysis of eight nuclear microsatellite markers [1]. In addition to the morphological 

and molecular data, the identity and geographic coordinates (latitude, longitude, elevation) for each of the 

71 oak tree populations is provided. 

Here, I use the term "observations" to refer to the individual trees and the term "variables" to indicate the 

morphological and molecular variables (e.g., PR, LNR, PCo1, PCo2). The following abbreviations are used 

for the oak tree species: "pe" for Q. petraea, "pu" for Q. pubescens and "ro" for Q. robur. The data analysis 

presented here is performed with the R software version 3.3.3 [5] and RStudio Version [6]. 

The R script used for this analysis can be found in Appendix 1.  

2. 1 Data Preprocessing 
 

The original data file containing the values for the morphological and molecular variables of the 1,369 

individual oak trees was merged with the original data file containing the geographical information for the 

71 oak tree populations. A summary of the original data is shown in Supplementary Table 1. Based on the 

evident positive skewness of the LNR variable and the different scales of the morphological variables 

(Figure 2A), the data was transformed as follows: the values for the LNR variable were transformed onto 

log (base 2) scale and subsequently, all morphological variables (BS, OB, PR, LDR, LDRW, LNR, PV and 

LWR) were scaled as follows: for each variable, the mean was subtracted from each value, which was next 

divided by the respective standard deviation. 
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To quantitatively evaluate the ML model accuracy (the misclassification rate), the observations in the train 

and test data set must have labels, i.e., their class identity is known [3][4]. Specifically, the individual trees 

must be assigned to one of the three oak species considered here Q. petraea, Q. pubescens or Q. robur. 

The trichome types on the lamina (leaf blade hairs) are morphological characteristics that can be used to 

delineate oak tree species. However, assigning trichomes to specific types is not trivial due to the existence 

of intermediate leaf hair types. Q. pubescens has mostly clustered trichomes, whereas Q. petraea has stellate 

trichomes. Q. robur is glabrous (hairless) on the lamina [1].  

To generate a surrogate variable indicating the species assignment (class labels), the trichome variables 

were used as follows: trees with stellate trichomes exclusively (no other or intermediate trichome types) 

were assigned to Q. petraea, trees with clustered trichomes exclusively were assigned to Q. pubescens and 

glabrous trees were assigned to Q. robur. This resulted in a data set, referred here to as "the labelled data 

set" of 819 individual trees for which morphological, molecular and species identity data is available. The 

remaining 550 observations, referred here to as "the unlabelled data set" with unresolved species identity, 

were kept aside and used for prediction, once the best ML models had been selected (Figure 1). The 

trichome variables (LS, LC, LI, VS and VC) used to generate the class labels were not included in the ML 

models. 
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Figure 2. Exploratory data analysis. A. The box plots show the different scales of the morphological variables 

measured values. Specifically, the positive skewness of the LNR predictor is emphasized in orange. B. The pie chart 

shows the proportion of the three oak tree species in the labelled data set. The number of observation for each of the 

three oak tree species is shown. C. The distinct distribution of the PCo1 values in the labelled, unlabelled and complete 

data set. D. The scatter plot matrix of the PCo1, PCo2 and PCo3 molecular variables indicate their influence on the 

species delineation. The three oak tree species are displayed in distinct colors, E. The pairwise correlation of the 

morphological and molecular variables is shown. For example, the PR morphological variable is strongly negatively 

correlated to the PCo1 molecular variable. 
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2.2 Exploratory Data Analysis 
 

The species proportion in the labelled data set is shown in Figure 2B and shows the underrepresentation of 

the Q. petraea species, with only 31 individuals. Furthermore, the distribution of the values for the PCo1 

and PR variables in the labelled and unlabelled data sets is different (Figure 2C and Supplementary Figure 

1). For example, the PCo1 distribution in the unlabelled data set peaks near to -0.1, whereas the distribution 

of PCo1 in the labelled data set is bimodal with lower peaks, near to -0.1 and 0.2. Together, these raise a 

warning for the interpretation of the ML approach on this data, because the data set used for training the 

model might not fully reflect the unlabelled data set, for which the prediction should be made. To reveal 

possible influence of the morphological and molecular variables on the species delineation, the scatter plot 

matrices of the transformed variables (see 2.1 Data Preprocessing and Supplementary Figure 2) were 

inspected (Figure 2D). The molecular variable PCo1 appears to drive the separation into two groups, one 

containing the Q. petraea and Q. pubescens species, and the other populated with the Q. robur trees. The 

PR and BS morphological variables also show a potential contribution to species delimitation 

(Supplementary Figure 2). Furthermore, there is a negative correlation between PCo1 and PR, whereas the 

remaining variables show moderate or no correlation (Figure 2E). These indicate that a subset of the 

variables (PCo1, PCo2, PR) most likely contribute most to delimitation of the three oak tree species. 

3 Statistical Methods and Results 
 

The goal of statistical classification, a domain of machine learning, is to assign a new observation to a 

defined class based on a training set of the data containing observations whose class membership is known. 

A broad range of ML methods are available for classification purposes, for example, discriminant analyses, 

decision trees, neural networks. An ML model should perform well not only on the training data set, but 

also on the test data set, containing observations with known class membership but that were not used to 

train the ML model. This represents the generalization error (test error) of an ML model and it reflects its 

prediction capability on separate test data, qualitatively guiding in practice the choice of an ML model 

(Figure 1). For example, cross-validation (CV) is a simple method that can be used to directly estimate the 

generalization error (e.g., the number of misclassified observations) associated with a given statistical 

learning method in order to evaluate its performance. Once a ML model is selected based on the 

aforementioned criteria, it can be used to classify new observations for which variable measurements are 

available [3][4].  
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Note 1 

Reproducibility: each ML method is run under a specified seed for the random number generation process 

(using an arbitrary value, e.g., "set.seed(909)"), to insure reproducibility. 

Note 2 

Cross-validation: the generalization error (test error) results from using a ML model to predict the 

response on an observation that was not used in training the model. This is trivial if a labelled test set is 

available. However, this is usually not the case in practice. The training error can be easily calculated by 

applying the ML model to the observations used for the model training, but this can dramatically 

underestimate the test error [3][7]. In the absence of a large labelled test set that can be used to directly 

estimate the test error rate, an alternative method is to hold out a subset of the training observations from 

the fitting process, ignore the labels, and then apply the ML model to those held out observations in order 

to classify them. K-fold CV is one such method, which randomly (sampling without replacement) divides 

the set of observations into K disjoint groups or folds (e.g. K=10) of approximately equal size. One of the 

folds is treated as a test set, and the model is fit on the remaining K-1 folds. The test error of the fitted 

model is calculated when predicting the k-th part (test set) of the data. This procedure is repeated for k = 

1, 2, ... , K and the K estimates of test error are finally combined to produce the cross-validation estimate 

of the test error. It has been shown empirically that using K = 5 or K = 10, yields test error rate estimates 

with low bias and variance [4]. Here, the 10-fold CV, without stratification (species proportion in the CV 

groups might be unbalanced), is used for each ML model. 
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3.1 ML Training 
 

To train and evaluate the performance of several ML methods, the labelled data set consisting of the 819 

observations together with the variables (morphological and molecular measurements as continuous 

variables) as well as the species assignment information (as a categorical variable with three levels), was 

used. Specifically, seven ML methods have been evaluated: K-Nearest Neighbor (KNN), Logistic 

Regression for Multiple Classes (LRmc), Linear Discriminant Analysis (LDA), Quadratic Discriminant 

Analysis (QDA), Recursive Partition and Regression Trees (rpart), Random Forests (RF) and Neural 

Networks (NN). The following eight morphological variables were used: basal shape of the lamina (BS), 

lamina shape or obversity (OB), petiole ratio (PR), lobe depth ratio at first lobe (LDR), lobe depth ratio at 

widest lobe (LDRW), percentage of venation (PV), lobe width ratio (LWR), lobe number ratio (LNR). As 

molecular variable, the first six principal coordinates components (PCo1 to PCo6) were used. Three sets of 

variables were used for training the ML models: the morphological, the molecular and the combined 

morphological-molecular variables. 10-fold CV together with the misclassification error rate on the test 

data sets were used to assess the accuracy of the ML models. The results of the ML models using the 

combined morphological and molecular variable set are described in detail because of the overall smaller 

misclassification rates. A summary of the 10-fold CV misclassification rates for each model and each of 

the three variable sets used (morphological, molecular and combined) are presented in Table 1. 

3.1.1 K-Nearest Neighbor (KNN) 
One of the simplest ML method is the K-Nearest Neighbor algorithm, which does not require a model to 

be fit [3][4][7]. Given a query point, the K training points, which are closest in distance (e.g. Euclidean) to 

the query point are first identified. Then the classification of the query point is done based on the majority 

vote among the K neighbors with ties being broken at random. To fit a KNN model in R, the knn() function 

implemented in the class package can be used (see Appendix 1). The KNN model with the combined 

variable set (morphological and molecular) was applied to the oak trees data set. Because the choice of K 

impacts significantly the result of the KNN classification, four values (K=1 to 4) were tested. Regardless 

of the K values, the misclassification affected mostly the Q. petraea species, as expected based on the 

lowest representation of this species in the data set (Figure 2B). The most optimal value of K appears to be 

K=4, yielding the smallest 10-fold CV misclassification rate of 16.24 %. Despite its simplicity, flexibility 

and relatively good performance, the KNN method does not provide information on which predictors are 

important. 
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3.1.2 Logistic Regression for Multiple Classes (LRmc) 
Logistic regression for multiple classes (multinomial regression) is a method that generalizes the logistic 

regression, by considering one reference class against all remaining classes [3][4][7]. It predicts the 

probabilities of the different possible outcomes of a categorically distributed dependent variable, given a 

set of independent variables. One of the assumption of LR for multiple classes is that there is a low 

correlation between the predictors (Figure 2E), however it does not make a Gaussian assumption for the 

class distributions. Parameters fitting is usually done by maximum-likelihood, using the conditional 

likelihood of a class given the predictors and the multinomial distribution [3][4]. The LR for multiple 

classes can be fitted in R using the multinom() function implemented in the nnet package (Appendix 1). 

The LRmc model with the combined variable set (morphological and molecular) has a 10-fold CV 

misclassification rate of 12.09 %, with the Q. petraea species having most of the observation wrongly 

classified. In practice, logistic regression for multiple classes is not used all that often, mainly because of 

the more appropriate discriminant methods, described next. 

3.1.3 Linear Discriminant Analysis (LDA) 
The linear discriminant analysis is a method that finds a linear combination of predictors that separates two 

or more classes of observations [3][4][7]. LDA models the conditional class densities as multivariate 

Gaussian distributions, where each class has its own mean but shares a common covariance matrix. This 

conditional distribution can be used as the a-posteriori distribution of the response variable (the class or 

species) given the predictors by using the a-priori distribution for the response. In practice the parameters 

of the Gaussian distributions are not known, and they need to be estimated based on the training data. As 

such, the training data set is used to estimate the class priors (the proportion of instances of certain class or 

species), the class means (the empirical sample class means) and the covariance matrix (the empirical 

sample class covariance matrix). Next, the a-posteriori distribution (the probability of an observation to 

belong to a specific class or species) is calculated. Finally, an observation is assigned to the class with the 

highest probability. This is a linear discriminant classifier because the estimated decision functions are 

linear in the predictor variables [3][4][7]. LDA can be fitted in R using the lda() function implemented in 

the MASS package. The LDA model with the combined variable set (morphological and molecular) applied 

to the oak trees data set yields the smallest 10-fold CV misclassification rate of 9.89 %. Notably, the 

classification of the Q. petraea observations is improved, albeit still not satisfactory. Less than half of the 

observations are correctly assigned to this species (41.9 %), however this is an improvement of 20 % 

compared to the LRmc model. LDA is considered to be more stable than LR for multiple classes when there 

are more than two classes and when the number of observations is small [3][4]. Given the relatively small 

number of observations (819) and the underrepresentation of the Q. petraea species (Figure 1 and Figure 
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2B), LDA appears to be a suitable classification model for this data set, supported by the good performance 

of accurately predicting the species in 90 % of the cases. 

3.1.4 Quadratic Discriminant Analysis (QDA) 
The quadratic discriminant analysis is a generalization of the LDA and it assumes that the observations in 

each class (the species) are drawn from a Gaussian distribution but that each class has its own covariance 

matrix. The estimates for QDA are similar to those for LDA, except for the covariance matrices, which 

must be estimated separately for each class [3][4][7]. In R, the QDA can be fitted with the qda() function 

implemented in the MASS package. The QDA model with the combined variable set (morphological and 

molecular) has a 10-fold CV misclassification rate of 12.33 %, with a poor classification of the Q. petraea 

observations (90 % of the observations are misclassified). QDA is known to underperform compared to 

LDA if there are many predictors and relatively few training observations. That is because QDA assumes 

class specific covariance matrices and hence, it estimates a higher number of parameters compared to LDA 

[7]. 

3.1.5 Neural Networks (NN) 
Neural networks are two stage methods, relying on extracting linear combinations of the predictors as 

derived features, and then modelling the response as a nonlinear function of these features [3][4][7]. For 

the K-class classification with a feed-forward neural network with a single hidden layer, there are K units 

at the top layer, with the k-th unit modelling the probability of class k. There are K response measurements, 

each being coded as a 0/1 variable for the k-th class. The predictors are at the bottom layer. The hidden 

layer consists of the derived features, which are created from linear combinations of the predictors [3][4][7]. 

The response (class or species assignment) is modelled as a function of linear combinations of the derived 

features. The unknown parameters of the neural network, often called weights, are estimated by maximum 

likelihood. Feedforward neural networks can be fitted in R with the function nnet() from the nnet package. 

It is important that the variable values are centered and scaled (see Data Preprocessing) to avoid that 

gradient methods for optimizing the likelihood get stuck in the at regions of the sigmoid functions [7]. The 

NN model with the combined variable set (morphological and molecular) yields a 10-fold CV 

misclassification rate of 10.5 %. Most of the observation assigned to Q. petraea are misclassified. 

3.1.6 Tree-based Classification Methods 
Tree-based methods partition the predictors space into a set of disjoint regions (rectangles) and then fit a 

model for each region. A classification tree predicts that within regions, each observation belongs to the 

most commonly occurring class (species) among the observations of that region [3][4][7]. A classification 
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tree is grown by recursive binary splitting. As a criterion for determining the binary splits, the 

misclassification rate could be used (the fraction of the training observations in that region that do not 

belong to the most common class). However, the classification error is not sufficiently sensitive for tree-

growing, and in practice the Gini index is used [3][4][7]. The Gini index is a measure of total variance 

across all classes and as such, a measure of node purity (a small value indicates that a node contains 

predominantly observations from a single class). Based on the best split, the data is partitioned in two 

regions and the splitting process is repeated on each of the two regions. This process is performed on all of 

the resulting regions (recursive binary splitting). Once a tree is grown, its optimal size should be adaptively 

chosen based on the data. A recommended option is to first, grow a large tree, then stop the splitting process 

once some minimum node size is reached (e.g., 5, the number of observations in a node) and then prune 

(backward elimination) the large tree by using cost-complexity pruning approach [3][4][7]. 

3.1.6.1 Recursive Partitioning and Regression Trees (rpart) for Classification 
The function rpart() implemented in the rpart package can be used in R to fit recursive partitioning 

classification trees. The performance of the rpart model with the combined variable set (morphological and 

molecular) is poor, especially related to the Q. petraea species where all observations are misclassified. 

Although tree-based classification methods are simple and offer intuitive interpretation, they typically are 

inferior in terms of prediction accuracy to other supervised learning approaches (e.g. LDA). Furthermore, 

the greedy tree-type algorithm may produce unstable splits. As such, if one of the first splits is wrong, all 

subsequent splits will be wrong [3][4][7]. However, by aggregating many decision trees, as implemented 

in the random forests ML method, the predictive performance of trees can be substantially improved. 

3.1.6.2 Random Forests (RF) 
Random forests is a powerful and stable algorithm that builds a certain number of decision trees based on 

bootstrapped training samples [3][4][7]. Each time a split in a tree is considered, a random sample of m 

predictors is chosen as split candidates from the full set of the p predictors. The split is allowed to use only 

one of those m predictors. A fresh sample of m predictors is taken at each split, and typically the number of 

predictors considered at each split is approximately equal to the square root of the total number of 

predictors. Finally, the prediction of the class for the new data is done by aggregating the predictions over 

all grown trees (majority votes). To estimate the misclassification rate from the training data, at each 

bootstrap iteration the class of the observations not included in the bootstrap sample (out-of-bag data, OOB) 

is predicted using the tree grown with the bootstrap sample. Next, the OOB predictions are aggregated and 

the overall OOB misclassification rate is computed [3][4][7]. The randomForest() function implemented 

in the randomForest package can be used to fit a RF model and it optionally provides a measure of the 
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importance of the predictor variables. The RF model with the combined variable set (morphological and 

molecular) has a 10-fold CV misclassification rate of 10.99 % and a OOB misclassification rate of 10.26 

%. Similar to the rpart model, most of the observations assigned to Q. petraea based on the RF model are 

misclassified. However, the RF model performs better than rpart model in predicting the Q. pubescens 

species with an 8 % increase in prediction accuracy based on the misclassification rate. 

 

3.2 ML Model Evaluation  
 

Overall, the seven evaluated ML models considering the combined variable sets (morphological and 

molecular) perform better in terms of the 10-fold CV (and OOB for the RF model) misclassification rate 

compared to the models using either the morphological or the molecular variable set separately (Table 1).  

Table 1. The performance summary of the seven ML models using each of the three variable sets (Mp: morphological, 

Mc: molecular and MpMc: combined). The 10-fold CV (and OOB for the RF models) misclassification rate and the 

misclassification rate relative to each class for each species is shown in percentages. The best performing ML models 

are emphasized in blue. 

 

The LDA model with the combined variable sets (morphological and molecular) performs best, predicting 

accurately the oak tree species in 90 % of the cases. Furthermore, the misclassification rate for the 

observations assigned to the Q. petraea species is the smallest among all ML models evaluated. 

Accordingly, the LD1 component delineates Q. robur species from Q. pubescens and Q. petraea, whereas 

the LD2 component additionally delimits the Q. petraea species (Figure 3A).  

 

ML#model  Misclassification 
Rate Q.#petraea Q.#pubescens Q.#robur 

  MpMc Mp Mc MpMc Mp Mc MpMc Mp Mc MpMc Mp Mc 

KNN (K=4) 

10
-fo

ld
 C

V 

16.24 17.34 13.68 93.54 93.54 87.09 13.79 15.86 11.37 12.85 13.45 10.44 

LRmc 12.09 16.48 13.31 77.41 90.32 93.54 11.37 18.27 11.37 8.43 10.84 9.43 

LDA 9.89 15.87 12.82 58.06 87.09 74.19 4.82 15.86 7.58 9.83 11.44 12.04 

QDA 12.33 16.48 13.19 90.32 90.32 90.32 8.96 18.62 9.65 9.43 10.64 10.44 

NN 10.50 17.58 12.82 77.41 90.32 96.77 8.96 15.86 7.93 7.22 14.05 10.44 

rpart 14.16 17.34 14.16 100.0 93.54 100.0 12.41 13.79 12.06 9.83 14.65 10.04 

RF 10.99 16.12 12.94 96.77 100.0 100.0 5.51 13.79 9.65 8.83 12.24 9.43 

RF OOB 10.26 16.73 12.94 93.54 100.0 100.0 4.13 14.48 9.65 8.63 12.85 9.43 
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Figure 3. The results of the best three ML models are shown. A. The species assignment based on the LDA model 

with the combined variable sets (morphological and molecular) is shown. Correctly assigned individual observations 

are displayed in gray and misclassified observations are shown in magenta. The three oak tree species are indicated 

by the distinct plotting symbols. The LDA model decision boundaries are represented as green lines. The centers (class 

means) of each species partition are displayed as black circles. B and C. The predictors importance based on the NN 

and RF models with the combined variable sets (morphological and molecular), respectively, is shown. 

 

According to the results of the RF model with the combined variable sets (morphological and molecular), 

the molecular PCo1 predictor and the morphological PR (petiole ratio) and PV (percentage of venation) 

predictors appear to have the highest importance in classifying the oak tree species (Figure 3C). According 

to the NN model with the combined variable sets (morphological and molecular) however, PCo1 and PR 

have only moderate importance, whereas PCo2 and PCo3 are the predictors the influence the most the 

species classification (Figure 3B). Noteworthy, all ML models result in a high misclassification rate of the 

observations assigned to the Q. petraea species. This is likely related to the underrepresentation of these 

species in this data set (Figure 2B).  
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3.3 ML-based Species Prediction for the Unlabelled Observations 
 

The best three ML models according to the 10-fold CV (and OOB) misclassification rate, are the LDA, NN 

and RF models using the combined variable set (morphological and molecular). These selected ML models 

were used to predict the species for the unlabelled data set consisting of 550 observations. 

The probability of belonging to one of the three oak tree species for each of the LDA, NN and RF models 

is shown in the Figure 4A.   

 

Figure 4. ML-based species prediction for the unlabelled observations. A. The ternary plots show the probabilities of 

the 550 previously unlabelled observations to belong to one of the three species, according to the prediction based on 

the LDA, NN and RF models with the combined variable set (morphological and molecular). The three oak tree species 

are represented in distinct colors. Every observation on the ternary plots is displayed as a circle and its location 

represents a different composition of the probabilities of belonging to one of the three oak tree species. Observations 

located at the corners of the triangles have high probabilities to belong to the respective species whereas the probability 

of belonging to one of the two remaining species is low, hence their classification is specific. Observations located 

near the center of the triangles have similar probability of belonging to either of the three species, hence their 

classification is ambiguous. B. The pie charts show the proportion of the predicted species for the previously 

unlabelled observations based on the LDA, NN and RF models with the combined variable set (morphological and 

molecular). 

 



2017                                                                                        Machine Learning Assisted Species Assignment in Oak Trees | Diana Coman Schmid 

!

! 18 

For the LDA model with the combined variable set (morphological and molecular), the Q. pubescens 

species is predicted with the highest probability, whereas the remaining two species (Q. petraea and Q. 

robur) show classification probabilities that could either place them to their respective class or misclassify 

them as Q. pubescens species. The classification predicted according to the NN model with the combined 

variable set (morphological and molecular) is most unstable for the Q. petraea species. The RF model with 

the combined variable set (morphological and molecular) has most likely the lowest predicting capacity. 

Species classified as Q. petraea or Q. robur could most likely belong to Q. pubescens species according to 

the small differences in their classification probabilities. 

The LDA model with the combined variable set (morphological and molecular) predicts that most of the 

observation belong to the Q. pubescens species (360), followed by the Q. petraea species with 125 and Q. 

robur with 65 individuals, respectively (Figure 4B). Similar to the LDA model, the NN model with the 

combined variable set (morphological and molecular) classifies the majority of the unlabelled observations 

as Q. pubescens (330), followed by 174 trees assigned to Q. robur and 46 trees assigned to Q. petraea. 

Consistently, the RF model with the combined variable set (morphological and molecular) classifies the 

majority of the unlabelled observations as Q. pubescens (449), whereas only 94 and 7 observations are 

assigned to Q. robur and Q. petraea, respectively (Figure 4B). 

Finally, the species composition of the 71 oak tree populations can be inspected in two scenarios: based on 

the species assignment derived from the trichome data (819 labelled observations) and based on the ML 

models species predictions (species assignment for the unlabelled 550 observations). Both scenarios are 

displayed based on their longitude and latitude information, onto the map of Switzerland (Figure 5). 

The predictions based on the LDA and NN models with the combined variable set (morphological and 

molecular) appear to capture best the population composition of the labelled data set. These two models 

successfully predict observations to belong to the Q. petraea species, whereas the RF model with the 

combined variable set (morphological and molecular) show only modest performance in predicting this 

underrepresented species (Figure 5). The RF model relies mainly on the PCo1 predictor, and in turn this 

shows a distinct distribution of values in the data set used to train the ML model compared to the unlabelled 

data set used for predicting the species. Therefore, the LDA and NN models, for which other predictors in 

addition to the PCo1 are of importance (Figure 3), are most likely more appropriate models given this data 

set, for predicting the species assignment for new observations. 
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Figure 5. The species composition and the geographical location of the 71 oak tree populations. The four panels show 

the species proportions based on the ML-training data set (819 labelled observations) and based on the species 

predictions for the 550 previously unlabelled observation according to the three best ML models with the combined 

variable set (morphological and molecular). Each pie chart corresponds to an oak tree population and it displays 

proportionally the species composition. The three oak tree species are indicated by distinct colors. Pure populations 

appear in single colors, whereas mixed populations (mixed colors) reflect the proportional species compositions. 

 

4 Conclusion 
 

Two critical observations have emerged during this study, which should be taken into account when 

interpreting the oak tree species predictions based on the ML models used here. First, assuming the labelling 

of the training data set based on the trichome profiles, one of the species, Q. petraea, is underrepresented 

(Figure 2B). This could further lead to underrepresentation of individual observations of this species in the 

10-fold CV blocks. A possibility to overcome this is to stratify the three species in the CV sampling, 

insuring a more balanced species representation across the CV blocks. Second, the training data set (labelled 

observations) does not appear to comprehensively capture the profile of the unlabelled data set, for which 

predictions should be made (Figure 2C). This could lead to predicting classes based on features of the 
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predictors for which the ML models have not been trained. The second aspect cannot be overcome 

analytically and it is rather likely due to the experimental sampling setup. For example, the labelled and 

unlabelled data sets contains each of a subset of the 71 oak trees populations which are overrepresented in 

only one of the data sets (Supplementary Figure 3). Future ML analyses of such data sets would benefit 

from a balanced class distribution and from a comparable distribution of the predictors values in the labelled 

training data set and in the unlabelled data set used for predictions. 

Overall, the findings of this study are in line with the results reported by Rellstab et al. [1] and support the 

main fact that molecular markers have a potential to assist and possibly replace the more difficult to obtain 

and evaluate morphological predictors for accurate species assignment in hybridising European white oak 

trees. The most accurate ML models in this study are those considering a combination of the morphological 

and molecular variables, predicting correctly the species in up to 90 % of the cases. In conclusion, I show 

here that ML techniques can in principle be useful in identifying oak tree species based on molecular and 

morphological characters. Specifically, should the leaf trichome data be available for individual oak trees 

with unresolved species assignment, either an LDA or NN algorithm can be used to reliably assign the 

species these oak trees belong to. 
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Supplementary Material 
 

Supplementary Table 1. Summary of the original data set. A. The data structure: name and type of variables. B. 

Summary statistics of the variables. 

A. 

 

B. 
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Supplementary Figure 1. The distribution of the morphological (A) and molecular (B) variable values in the labelled 

data set (819 observations). The distinct distribution of the PR morphological variable in the labelled, unlabelled and 

complete data set is shown (C).  
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Supplementary Figure 2. The scatter plot matrix of the morphological predictors. The three oak tree species are 

displayed in distinct colors. Several morphological variables appear to have an influence on the oak tree species 

delineation (e.g., PR and BS).  
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Supplementary Figure 3. 

The distinct representation of the 71 oak tree populations in the labelled and unlabelled data sets is displayed as 

heatmap. Due to the field sampling experimental design, each population consisted of 20 individual oak trees. The 

number of observations (individual oak trees) for each population in the labelled and unlabelled data set is indicated 

by the color scale: red no or low number of observations (0 to 5) and yellow for moderate to high number of 

observations (15 to 20). Some population are absent from either of the labelled or unlabelled data sets (red sectors in 

the heatmap).   

 

 

 

 

 

 



Appendix 1. The R script for the data analysis presented in this thesis. 

!

Install'and'load'required'R'packages:'
ipak%<'%function(pkg){!
%%new.pkg%<'%pkg[!(pkg%%in%%installed.packages()[,%"Package"])]!
%%if%(length(new.pkg))%!
%%%%install.packages(new.pkg,%dependencies%=%TRUE)!
%%sapply(pkg,%require,%character.only%=%TRUE)!
}!
!
packages%<'%c("ggplot2","ggmap","rgdal","rgeos","maptools","dplyr","tidyr","k
nitr","tmap",!
%%%%%%%%%%%%%%"maps","caret","SparseM","xlsx","AppliedPredictiveModeling","cl
ass","nnet",!
%%%%%%%%%%%%%%"rpart","rpart.plot","data.table","timeDate","lubridate","rando
mForest","MASS","ranger",!
%%%%%%%%%%%%%%"ggtern","qmap","ggforce","scatterpie","RColorBrewer","corrplot
","klaR","NeuralNetTools","gplots")!
!
ipak(packages)!
!
lapply(packages,%library,character.only=TRUE)!

Data'preprocessing'
The$Latitude$and$Longitude$columns$are$swapped$in$the$original$file$(verified$on$map).$This$is$
addressed$below.!

q.param%<'%read.xlsx2("/.../quercus_parameters.xlsx",1)!
q.param[,4:22]%<'%apply(q.param[,4:22],2,function(x)as.numeric(as.character(x
)))!
!
q.geo%<'%read.xlsx2("/.../quercus_populations.xlsx",1)!
q.geo$Population%<'%factor(paste0("Ei",q.geo$Population))!
colnames(q.geo)[1:3]%<'%c("Pop","lon","lat")!
q.geo$lon%<'%as.numeric(as.character(q.geo$lon))!
q.geo$lat%<'%as.numeric(as.character(q.geo$lat))!
!
q.dat.full%<'%merge(q.geo,q.param,by="Pop")!



'

Exploratory'data'analysis'
The$variables$used$for$defining$species$assignment$rules$are$excluded!

Lfeat%<'%c("BS","OB","PR","LDR","LDRW","LNR","PV","LWR")!
PCload%<'%paste0("PCo",1:6)!
GEOloc%<'%"geo"!
Elev%<'%"Elevation..m.a.s.l.."!
!
#"plot"the"predictor"values"ranges"(full"data"set"of"1,369"observations)!
svg("/.../Plot.svg")!
!
par(mfrow=c(2,3),oma=c(0,0,2,0))!
for%(i%in%colnames(q.dat.full[,PCload])){!
%%boxplot(q.dat.full[,i],main=i)!
}!
title("Full%data%set%1,369%obs",%outer=TRUE)!
!
par(mfrow=c(2,4),oma=c(0,0,2,0))!
for%(i%in%colnames(q.dat.full[,Lfeat])){!
%%boxplot(q.dat.full[,i],main=i)!
}!
title("Full%data%set%1,369%obs",%outer=TRUE)!
dev.off()!
!
#"data"transformation"!
q.dat.full$LNR%<'%log2(q.dat.full$LNR)!
!
#"data"scaling;"only"Lfeat!
colnames(q.dat.full[,Lfeat])!
q.dat.full[,Lfeat]%<'%scale(q.dat.full[%,Lfeat])!

Define!the!classes!or!species!based!on!trichome!profiles!+!exclusively!stellate!hair!on!the!
lamina:!LS/LC/LI=1/0/0!AA>!Q.$petraea!+!exclusively!clustered!hair!on!the!lamina:!
LS/LC/LI=0/1/0!AA>!Q.$pubescens!+!no!hair!on!the!lamina:!LS/LC/LI=0/0/0!AA>!Q.$robur!

pe%<'%paste0(1,0,0)!
pu%<'%paste0(0,1,0)!
ro%<'%paste0(0,0,0)!
!
for%(i%in%1:nrow(q.dat.full)){!
%%q.dat.full[i,"hairP"]%<'%paste(unlist(q.dat.full[i,c("LS","LC","LI")]),coll
apse="")!
}!
!
!



q.dat.full$Species%<'%ifelse(q.dat.full$hairP%==%pe,"pe",!
%%%%%%%%%%%%%%%%%%%%%%%%ifelse(q.dat.full$hairP%==%pu,"pu",!
%%%%%%%%%%%%%%%%%%%%%%%%%%ifelse(q.dat.full$hairP%==%ro,"ro","Undef")))!
!
table(q.dat.full$Species)!
!
#"define"distribution"of"the"trees"into"geographical"regions"(e.g."NBW,"SBW,"
NBE"and"SBE)!
#"limits"are"chosen"basedon"visual"inspection"of"the"plot"displaying"species"
in"longitude"vs."latitude"space!
!
q.dat.full$geolon%<'%cut(q.dat.full$lon,%c(@Inf,%8.071,%Inf),!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%labels=c("West",%"East"))!
!
q.dat.full$geolat%<'%cut(q.dat.full$lat,%c(@Inf,%46.6964,%Inf),!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%labels=c("South",%"North"))!
table(q.dat.full$geolon)!
table(q.dat.full$geolat)!
!
q.dat.full$geo%<'%paste0(q.dat.full$geolat,"_",q.dat.full$geolon)!
table(q.dat.full$geo)!
sum(table(q.dat.full$geo))!

Plot!the!distribution!of!predictor!values!in!the!scaled,!full!data!set!(1,369!observations)!

svg("/.../Plot.svg")!
par(mfrow=c(2,3),oma=c(0,0,2,0))!
for%(i%in%colnames(q.dat.full[,PCload])){!
%%plot(density(q.dat.full[,i]),main=i)!
}!
title("Scaled%full%data%set%1,369%obs",%outer=TRUE)!
!
par(mfrow=c(2,4),oma=c(0,0,2,0))!
for%(i%in%colnames(q.dat.full[,Lfeat])){!
%%plot(density(q.dat.full[,i]),main=i)!
}!
title("Scaled%full%data%set%1,369%obs",%outer=TRUE)!
dev.off()!

Split!the!data!into!a!labelled!data!set!(for!which!species!information!was!deduced!from!the!
trichome!profiles!data)!and!an!unlabelled!data!set.!

#"labelled"data"set!
q.dat%<'%q.dat.full[q.dat.full$Species%!=%"Undef",]!
q.dat$Species%<'%as.factor(q.dat$Species)!
q.dat$geo%<'%as.factor(q.dat$geo)!
table(q.dat$Species)!
!
#"unlabelled"data"set!
newd%<'%q.dat.full[q.dat.full$Species%==%"Undef",]!



newd$Species%<'%as.factor(newd$Species)!
newd$geo%<'%as.factor(newd$geo)!

Verify!if!there!are!potential!sampling!differences!for!the!labelled!and!unlabelled!data!sets!

pop.lb%<'%as.matrix(table(q.dat$Pop))!
pop.unlb%<'%as.matrix(table(newd$Pop))!
pop.lbunlb%<'%merge(pop.lb,pop.unlb,by="row.names")!
rownames(pop.lbunlb)%<'%pop.lbunlb[,1]!
pop.lbunlb[,1]%<'%NULL!
colnames(pop.lbunlb)%<'%c("pop_lb","pop_unlb")!
!
svg("/.../Plot.svg")!
heatmap.2(as.matrix(pop.lbunlb),cexCol%=%0.75,trace%=%"none",cexRow%=%0.65)!
dev.off()!

Plot!predictor!values!distribution!in!the!labelled!and!unlabelled!data!sets!(and!in!the!full!
data!set!of!1,369!observations)!

svg("/.../Plot.svg")!
par(mfrow=c(1,1))!
plot(density(q.dat.full$PCo1),col="gray",ylim=c(0,6.5),main="PCo1",cex.main=0
.65,xlab=NA)!
lines(density(q.dat$PCo1),col="blue")!
lines(density(newd$PCo1),col="orange")!
legend(0.05,6,c("all","labelled","unlabelled"),col=c("gray","blue","orange"),
cex=0.5,lty%=%1,bty%=%"n")!
dev.off()!
!
svg("/.../Plot.svg")!
plot(density(q.dat.full$PR),col="gray",ylim=c(0,0.65),main="PR",cex.main=0.65
,xlab=NA)!
lines(density(q.dat$PR),col="blue")!
lines(density(newd$PR),col="orange")!
legend(0.5,0.6,c("all","labelled","unlabelled"),col=c("gray","blue","orange")
,cex=0.5,lty%=%1,bty%=%"n")!
dev.off()!

Plot!the!species!proportion!in!the!labelled!data!set,!the!scatter!plot!matrices!for!the!
predictors!and!the!predictors!correlogram!

#"species"proportion!
svg("/.../Plot.svg")!
print(ggplot(q.dat,%aes(x%=%Species,fill=Species))%+!
%%geom_bar(width%=%1)%+!
%%coord_polar())%!
dev.off()!
!
#"PCo1,2,3"scatter"plot"matrix!
svg("/.../Plot.svg")!
transparentTheme(trans%=%.5)!



featurePlot(x%=%q.dat[,PCload[1:3]],%!
%%%%%%%%%%%%y%=%q.dat$Species,%!
%%%%%%%%%%%%plot%=%"pairs",pch="*",!
%%%%%%%%%%%%auto.key%=%list(columns%=%3))!
dev.off()!
!
#"morphological"predictors"scatter"plot"matrix!
svg("/.../Plot.svg")!
transparentTheme(trans%=%.5)!
featurePlot(x%=%q.dat[,Lfeat],%!
%%%%%%%%%%%%y%=%q.dat$Species,%!
%%%%%%%%%%%%plot%=%"pairs",pch="*",!
%%%%%%%%%%%%auto.key%=%list(columns%=%3))!
dev.off()!
!
#"molecular"predictor"values"distribution!
svg("/.../Plot.svg")!
transparentTheme(trans%=%.9)!
featurePlot(x%=%q.dat[,PCload],%!
%%%%%%%%%%%%y%=%q.dat$Species,!
%%%%%%%%%%%%plot%=%"density",%!
%%%%%%%%%%%%scales%=%list(x%=%list(relation="free"),%!
%%%%%%%%%%%%%%%%%%%%%%%%%%y%=%list(relation="free")),%!
%%%%%%%%%%%%adjust%=%1.5,%!
%%%%%%%%%%%%pch%=%"|",%!
%%%%%%%%%%%%layout%=%c(3,%2),%!
%%%%%%%%%%%%auto.key%=%list(columns%=%3))!
dev.off()!
!
#"morphological"predictor"values"distribution!
svg("/.../Plot.svg")!
transparentTheme(trans%=%.9)!
featurePlot(x%=%q.dat[,Lfeat],%!
%%%%%%%%%%%%y%=%q.dat$Species,!
%%%%%%%%%%%%plot%=%"density",%!
%%%%%%%%%%%%scales%=%list(x%=%list(relation="free"),%!
%%%%%%%%%%%%%%%%%%%%%%%%%%y%=%list(relation="free")),%!
%%%%%%%%%%%%adjust%=%1.5,%!
%%%%%%%%%%%%pch%=%"|",%!
%%%%%%%%%%%%layout%=%c(4,%2),%!
%%%%%%%%%%%%auto.key%=%list(columns%=%3))!
dev.off()!



'

Machine'learning'
#"use"the"labelled"data"set"(819"observations)"to"train"and"test"the"ML"model
s!
q.dat.s%<'%subset(q.dat,select=c(c(PCload,Lfeat),"Species"))!
table(q.dat.s$Species)!
!
#"plot"the"predictors"correlations!
p.corr%<'%cor(q.dat.s[,@15])!
col1%<'%colorRampPalette(c("#67001F",%"#B2182B",%"#D6604D",%"#F4A582",%"#FDDB
C7",!
%%%%%%%%%%%%"#FFFFFF",%"#D1E5F0",%"#92C5DE",%"#4393C3",%"#2166AC",%"#053061")
)%%!
!
svg(".../Plot.svg")!
corrplot(p.corr,method="ellipse",type="lower",%diag%=%FALSE,%col=col1(35),tl.
cex%=%0.75,tl.col%=%"gray")!
dev.off()!
!
#"ML"with"CrossBvalidation!
attach(q.dat.s)!
source("http://stat.ethz.ch/Teaching/WBL/Source'WBL'5/03.RCodes/dm'serie2.R")!
!
##%Funktionen%f??r%Klassifikationsvergleiche%mit%CV!
#"CVtest"<B"function(fitfn,"predfn,"data,"k"="10,"verbose=TRUE,"...)!
#"{!
#"""n"<B"nrow(data)!
#"""stopifnot(is.numeric(n),"n">="1,"1"<="k,"k"<="n)!
#"""ii"<B"sample(n)!
#"""res"<B"numeric(n)!
#"""j1"<B"1""""""""""""""""""""""""""##"Start"des"ersten"Blocks!
#"""if(verbose)"cat("fold"")!
#"""for"(i"in"1:k)"{!
#"""""j2"<B"(i*n)"%/%"k""""""""""""""##"Ende"des"iBten"Blocks!
#"""""j"<B"ii[j1:j2]"""""""""""""""""##"Indizes"der"TestBBeob"im"Fold"i!
#"""""fitted.model"<B"fitfn(data"="data[Bj,],"...)!
#"""""if(verbose)"{"cat(i,""");"flush.console()"}!
#"""""res[j]"<B"predfn(fitted.model,"newdata"="data[j,])!
#"""""j1"<B"j2"+"1"""""""""""""""""""##"Start"des"(i+1)Bten"Blocks!
#"""};"if(verbose)"cat("\n")!
#"""res!
#"}!
#"!
#"con"<B"function(...)!
#"{!
#"""print(tab"<B"table(...),"zero.print"="".")!
#"""t0"<B"tab";"diag(t0)"<B"0!



#"""cat("error"rate"="",!
#"""""""round(100*sum(t0)/length(list(...)[[1]]),"2),""%\n")!
#"""invisible(tab)!
#"}!
#"!
!
!
#"KNN!
q.dat.s.tr%<'%q.dat.s[,@15]!
n%<'%nrow(q.dat.s.tr[,@15])!
!
set.seed(909)!
ii%<'%sample(n)!
res.knn%<'%numeric(n)!
k%<'%10%%#""kBfold"for"crossBvalidation!
!
for(KK%in%1:4)%{%#"KK"is"the"number"of"nearest"neighbors!
%%cat("KNN%(K%=%",%KK,"):\n'''''''''''\n",sep="")!
%%j1%<'%1%%%%%%%%%%%%%%%%%%%%%%%%%%#"Start"of"the"1^st"CV"block!
%%for%(i%in%1:k)%{!
%%%%j2%<'%(i*n)%%/%%k%%%%%%%%%%%%%%#"Endof"the"i^th"CV"block!
%%%%j%<'%ii[j1:j2]%%%%%%%%%%%%%%%%%#"Indices"of"the"test"data"set"at"CV"fold"
i!
%%%%res.knn[j]%<'%knn(train%=%q.dat.s.tr[@j,],%test%=%q.dat.s.tr[j,],!
%%%%%%%%%%%%%%%%%%%%%%cl%=%q.dat.s$Species[@j],%k%=%KK)!
%%%%cat(i,%"");%flush.console()%%%%!
%%%%j1%<'%j2%+%1%%%%%%%%%%%%%%%%%%%#"Start"of"the"(i+1)^th"CV"block!
%%};%cat("\n")!
%%con(true%=%q.dat.s$Species,%predicted%=%res.knn)!
}!
!
!
!
#"Logistic"regression"for"multiple"classes!
set.seed(909)!
res.multinom%<'%CVtest(function(...)%multinom(Species%~%.,%...),!
%%%%%%%%%%%%%%%%%%%%%%%function(obj,%...)%predict(obj,%type%=%"class",%...),!
%%%%%%%%%%%%%%%%%%%%%%%data%=%q.dat.s,%maxit%=%1000,%trace%=%FALSE)!
!
con(true%=%q.dat.s$Species,%"CV'predicted"%=%res.multinom)!
!
#"LDA!
set.seed(909)!
res.lda%<'%CVtest(function(...)%lda(Species%~%.,%...),!
%%%%%%%%%%%%%%%%%%function(obj,%...)%predict(obj,%...)$class,!
%%%%%%%%%%%%%%%%%%data%=%q.dat.s)!
!
con(true%=%q.dat.s$Species,%"CV'predicted"%=%res.lda)!
!



r.lda%<'%lda(Species%~%.,%data=q.dat.s)!
datPred<'data.frame(Species=predict(r.lda)$class,predict(r.lda)$x)%!
datPred$pch.s%<'%ifelse(datPred$Species%==%"pe",1,!
%%%%%%%%%%%%%%%%%%%%%%%%ifelse(datPred$Species%==%"pu",2,!
%%%%%%%%%%%%%%%%%%%%%%%%%%ifelse(datPred$Species%==%"ro",0,NA)))!
!
svg("/.../Plot.svg")!
partimat(Species~LD2+LD1,data=datPred,method="lda",!
%%%%%%%%%col.correct="gray",!
%%%%%%%%%col.wrong="orange",!
%%%%%%%%%imageplot=FALSE,!
%%%%%%%%%gs=datPred$pch.s)%!
dev.off()!
!
#"QDA!
set.seed(909)!
res.qda%<'%CVtest(function(...)%qda(Species%~%.,%...),!
%%%%%%%%%%%%%%%%%%function(obj,%...)%predict(obj,%...)$class,!
%%%%%%%%%%%%%%%%%%data%=%q.dat.s)!
!
con(true%=%q.dat.s$Species,%"CV'predicted"%=%res.qda)!
!
#"Neural"networks!
set.seed(909)!
res.nn%<'%CVtest(function(...)%!
%%%%%%%%%%%%%%%%%nnet(Species%~%.,%size%=%6,%decay%=%0.1,%trace=FALSE,%...),!
%%%%%%%%%%%%%%%%%function(obj,%...)%predict(obj,%type%=%"class",%...),!
%%%%%%%%%%%%%%%%%data%=%q.dat.s,%maxit%=%500)!
!
con(true%=%q.dat.s$Species,%"CV'predicted"%=%res.nn)!
!
r.nnet%<'%nnet(Species%~%.,%size%=%6,%decay%=%0.1,%trace=FALSE,%data=q.dat.s,
maxit=500)!
!
svg("/.../Plot.svg")!
olden(r.nnet)!
dev.off()!
!
#"recursive"partition"and"regression"trees"(rpart)!
set.seed(909)!
res.rpart%<'%CVtest(function(...)%rpart(Species%~%.,%...),!
%%%%%%%%%%%%%%%%%%%%function(obj,%...)%predict(obj,%type%=%"class",%...),!
%%%%%%%%%%%%%%%%%%%%data=q.dat.s)!
!
con("true"%=%q.dat.s$Species,%"CV'predicted"%=%res.rpart)!
!
#"Radom"Forests!
#"OOB!
set.seed(909)!



rf.rf%<'%randomForest(Species%~%.,%data=q.dat.s,importance=TRUE,proximity=TRU
E)!
!
rf.rf$confusion!
con(true%=%q.dat.s$Species,%predicted%=%predict(rf.rf))!
!
svg("/.../Plot.svg")!
varImpPlot(rf.rf,%sort%=%TRUE,%main="Variable%Importance",%n.var=5,pch=18,col
="gray")!
dev.off()!
!
#"10Bfold"CV!
set.seed(909)!
res.rf%<'%CVtest(function(...)%randomForest(Species%~%.,%...),!
%%%%%%%%%%%%%%%%%%%%%function(obj,%...)%predict(obj,%type%=%"response",%...),!
%%%%%%%%%%%%%%%%%%%%%data%=%q.dat.s)!
con(true%=%q.dat.s$Species,%predicted%=%res.rf)!
!
!
#"ML"prediction"of"the"observations"in"the"unlabelled"data"set"based"on"the"b
est"three"ML"models"(according"to"their"misclassification"rate)!
!
bestML%<'%r.lda!
newPR%<'%as.data.frame(predict(bestML,%newdata=newd)$post)!
!
bestML%<'%rf.rf!
newPR%<'%as.data.frame(predict(bestML,%newdata=newd,type="prob"))!
!
bestML%<'%r.nnet!
newPR%<'%as.data.frame(predict(bestML,%newdata=newd,type="raw"))!
!
SpeciesPR%<'%character(nrow(newPR))!
for%(i%in%1:nrow(newPR)){!
%%SpeciesPR[i]%<'%names(which.max(newPR[i,]))!
}!
!
newPR$SpeciesPR%<'%SpeciesPR!
newd$SpeciesPR%<'%SpeciesPR!
!
table(newPR$SpeciesPR)!
!
#"ternary"plot!
svg("/.../Plot.svg")!
tern.p%<'%ggtern(data%=%newPR,%aes(x%=%pe,%y%=%pu,%z%=%ro))%+%!
%%%%%%%%%%%%%%%geom_point(aes(fill%=%SpeciesPR),!
%%%%%%%%%%%%%%%%%%%%%%%%%%size%=%4,%!
%%%%%%%%%%%%%%%%%%%%%%%%%%shape%=%21,%!
%%%%%%%%%%%%%%%%%%%%%%%%%%color%=%"black",alpha=0.5)%+%!
%%%%%%%%%%%%!



%%%%%%%%%%%%%%%ggtitle("LDA%prediction")%+%!
%%%%%%%%%%%%%%%labs(fill%=%"Species")%+%!
%%%%%%%%%%%%%%%theme_rgbg()%+%!
%%%%%%%%%%%%%%%theme(legend.position%%%%%%=%c(0,1),%!
%%%%%%%%%%%%%%%%%%%%%legend.justification%=%c(0,1))!
%!
print(tern.p)!
dev.off()!
!
#"Plot"thespecies"proportion"in"the"predicted"(unlabelled)"data"set"(550"obse
rvations)!
svg("/.../Plot.svg")!
print(ggplot(newd,%aes(x%=%SpeciesPR,fill=SpeciesPR))%+!
%%geom_bar(width%=%1)%+!
%%coord_polar())!
dev.off()!

Plot!the!ML!predictions!on!the!map!of!Switzerland!

#"Proportion"of"species"(known"and"MLBpredicted)"within"each"of"the"71"popula
tions!
!
pops%<'%as.data.frame.matrix(table(as.character(q.dat$Pop),q.dat$Species))!
!
for%(i%in%row.names(pops)){!
%%pops[i,"lat"]%<'%unique(q.dat[which(q.dat[,"Pop"]%==%i),"lat"])!
%%pops[i,"long"]%<'%unique(q.dat[which(q.dat[,"Pop"]%==%i),"lon"])!
}!
!
pops$region%<'%factor(1:nrow(pops))!
!
#"plot"the"populations"and"their"species"proportions"(based"on"the"training"d
ata"set)"onto"the"map!
world_map%<'%map_data('world')%!
CHmap%<'%subset(world_map,%world_map$region=="Switzerland")!
!
svg("/.../Plot.svg")!
p%<'%ggplot(CHmap,%aes(long,%lat))%+%geom_map(map=CHmap,aes(map_id=region),%f
ill=NA,color="black")%+%!
%%%%%%coord_quickmap()%!
!
print(p%+%geom_scatterpie(aes(x=long,%y=lat,%group=region),%data=pops,cols=c(
"pe","pu","ro"),color=NA,%alpha=.75)%+%!
coord_fixed())!
!
dev.off()!
!
#"plot"the"populations"and"their"species"proportions"(MLBpredicted)"onto"the"
map!



!
popsPR%<'%as.data.frame.matrix(table(as.character(newd$Pop),newd$SpeciesPR))!
!
for%(i%in%row.names(popsPR)){!
%%popsPR[i,"lat"]%<'%unique(newd[which(newd[,"Pop"]%==%i),"lat"])!
%%popsPR[i,"long"]%<'%unique(newd[which(newd[,"Pop"]%==%i),"lon"])!
}!
!
popsPR$region%<'%factor(1:nrow(popsPR))!
!
world_map%<'%map_data('world')%!
CHmap%<'%subset(world_map,%world_map$region=="Switzerland")!
!
svg("/.../Plot.svg")!
p%<'%ggplot(CHmap,%aes(long,%lat))%+%geom_map(map=CHmap,aes(map_id=region),%f
ill=NA,color="black")%+%!
%%%%%%coord_quickmap()%!
!
print(p%+%geom_scatterpie(aes(x=long,%y=lat,%group=region),%data=popsPR,%cols
=c("pe","pu","ro"),color=NA,%alpha=.75)%+%!
coord_fixed())!
dev.off()!
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