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ABSTRACT 
With the objective of extending an existing ontology-based search 
with a formalism for spatial reasoning two approaches to a 
representation of the Region Connection Calculus (RCC) in OWL 
DL are explored. The exploration results in a representation 
which is minimal yet still allows inferring the relations between 
all connecting regions in any of the different RCC species using a 
sound and complete calculus. The theoretical results are 
demonstrated in a sample application. The scale of the 
representation in the sample application is discussed. While the 
successful approach can be applied to small applications, we 
conclude that further research is required before applying it to 
large applications. 

Categories and Subject Descriptors 
I.1.3 [Symbolic and Algebraic Manipulation]: Languages and 
Systems – Constraint and logic languages 

General Terms 
Algorithms, Experimentation, Languages, Theory, Verification. 

Keywords 
National Spatial Data Infrastructure, Ontology-based Search, 
Region Connection Calculus, Spatioterminological Reasoning. 

1. INTRODUCTION 
In recent years many countries have built National Spatial Data 
Infrastructures (NSDI). A NSDI is defined as the technologies, 
policies, and people necessary to promote sharing of geospatial 
data throughout all levels of government, the private and non-
profit sectors, and the academic community [5]. The goals of such 
infrastructures are to reduce duplication of effort among agencies, 
to make geographic data more accessible to the public, and to 
increase the benefits of using available data. In Switzerland the 
NSDI is currently under construction. An expert application 
within this NSDI is the Virtual Data Center (VDC) which offers 
Web-based access to distributed geo-ecological resources [6]. 

One of the services offered by the VDC is the “open” (viz. 
semantic) search. The semantic search is based on a bilingual 
ontology in OWL DL [2]. By exploiting the relationships between 
the building blocks of the ontology search terms are semantically 
expanded before querying the databases. The ontology holds 1155 
items (i.e. IDs) which refer to concepts, roles or individuals. 
Because of the many synonyms and similar terms used to label 
the items, the ontology holds many thousand terms. These terms 
denote thematic notions such as endangered species of animals 
and plants. They also denote spatial notions such as inventory 
objects (biotopes) and administrative regions. 

In order to process queries combining thematic and spatial 
notions, the semantic search must be extended with a formalism 
for spatial reasoning. Addressing the core of this extension, we 
explore how far the Region Connection Calculus (RCC) can be 
represented in OWL DL. Preliminary results from the exploration 
of a possible approach have been presented in [8]. The current 
paper extends this work by exploring an additional approach and 
demonstrating the results of the exploration in a sample 
application. We assume that the reader is familiar with OWL [14], 
DL and DL-based knowledge representation systems [1]. 

The paper is organized as follows: In section 2 a short 
introduction to RCC is provided. In section 3 we review a number 
of recent approaches aimed at combining RCC with OWL and 
discuss their potential for establishing reasoning with RCC in the 
Semantic Web. In section 4 we show how the different RCC 
species and their relations to each other can be represented in the 
terminology of a DL, supporting property hierarchies such as 
OWL DL. Section 5 explores two different approaches to a 
minimal representation of RCC in OWL DL and demonstrates the 
results in a sample application.1 Section 6 discusses the results of 
the exploration and section 7 concludes with an overview of 
future work. 

2. REGION CONNECTION CALCULUS 
The Region Connection Calculus (RCC) is an axiomatization of 
certain spatial concepts and relations in first order logic [15]. The 
basic theory assumes only one primitive dyadic relation: C(x, y) 
read as “x connects with y”. Individuals (x, y) can be interpreted 
as denoting spatial regions. The relation C(x, y) is reflexive and 
symmetric. 
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Using the primitive relation C(x, y) a number of intuitively 
significant relations can be defined. The most common of these 
are illustrated in figure 1 and their definitions as well as those of 
additional relations are given in table 1. The asymmetrical 
relations P, PP, TPP and NTPP have inverses which we write, as 
Ri, where R ∈ {P, PP, TPP, NTPP}. These relations are defined by 
definitions of the form Ri(x, y) ≡def R(y, x). 

Of the defined relations, DC, EC, PO, EQ, TPP, NTPP, TPPi and 
NTPPi have been proven to form a jointly exhaustive and pairwise 
disjoint set, which is known as RCC-8. Similar sets of one, two, 
three and five relations are known as RCC-1, RCC-2, RCC-3 and 
RCC-5, respectively: RCC-1 = {SR}, RCC-2 = {O, DR}, RCC-3 = 
{ONE, EQ, DR}, RCC-5 = {PP, PPi, PO, EQ, DR}. 

According to [15], regions support either spatial or temporal 
interpretation. In case of spatial interpretation, there is a variety of 
models to choose from. The authors provide some examples such 
as interpreting the relation C (“connects with”) in terms of two 
regions whose closures share a common point or stating that two 
regions connect when the distance between them is zero. 

In order to check consistency of a knowledge base holding spatial 
relations, so-called composition tables are used (cf. the 
composition table for RCC-5 in table 2). The entries in these 
tables share a uniform inference pattern which can be formalized 
as composition axioms of the general form ∀x, y, z. S(x, y) ∧ T(y, 
z) → R1(x, z) ∨ … ∨ Rn(x, z) where S, T, and Ri are variables for 
relation symbols. 

A similar approach which is based on the description of 
topological relations between two spatial regions was introduced 
as the 9-intersection model in [4]. In this model, eight out of nine 
relations can be interpreted in the same way as we interpret the 
RCC-8 relations, namely as spatial relations between polygons in 
the integral plane [9]. However, since it is based on a topological 
framework – and not on a logical one – the 9-intersection model 
is harder to combine with OWL DL than RCC. 

3. REVIEW OF EXISTING APPROACHES 
In [13] the authors aim at representing qualitative spatial 
information in OWL DL. On the basis of the (assumed) close 

Table 1. Definitions of the basic RCC relations 
SR(x, y) ≡def F(x, y) Spatially Related 
C(x, y) (primitive relation) Connects with 
DC(x, y) ≡def ¬C(x, y) DisConnected from 
P(x, y) ≡def ∀z[C(z, x) → C(z, y)] Part of 
O(x, y) ≡def ∃z[P(z, x) ∧ P(z, y)] Overlaps 
DR(x, y) ≡def ¬O(x, y) DiscRete from 
EC(x, y) ≡def C(x, y) ∧ ¬O(x, y) Externally Connected to
EQ(x, y) ≡def P(x, y) ∧ P(y, x) EQual to 
ONE(x, y) ≡def O(x, y) ∧ ¬EQ(x, y) Overlaps Not Equal 
PP(x, y) ≡def P(x, y) ∧ ¬P(y, x) Proper Part of 
PO(x, y) ≡def O(x, y) ∧ ¬P(x, y) ∧ ¬P(y, x) Partially Overlaps 
TPP(x, y) ≡def PP(x, y) ∧ ∃z[EC(z, x) ∧ EC(z, y)] Tangential Proper Part of

NTTP(x, y) ≡def PP(x, y) ∧ ¬∃z[EC(z, x) ∧ EC(z, y)] Non-Tangential Proper
Part of 

Table 2. RCC-5 composition table 

 DR(x, y) PO(x, y) EQ(x, y) PPi(x, y) PP(x, y) 

DR(y, z) T(x, z) 
DR(x, z) 
PO(x, z) 
PPi(x, z) 

DR(x, z) 
DR(x, z) 
PO(x, z) 
PPi(x, z) 

DR(x, z) 

PO(y, z) 
DR(x, z) 
PO(x, z) 
PP(x, z) 

T(x, z) PO(x, z) PO(x, z) 
PPi(x, z) 

DR(x, z) 
PO(x, z) 
PP(x, z) 

EQ(y, z) DR(x, z) PO(x, z) EQ(x, z) PPi(x, z) PP(x, z) 

PP(y, z) 
DR(x, z) 
PO(x, z) 
PP(x, z) 

PO(x, z) 
PP(x, z) PP(x, z) 

PO(x, z) 
EQ(x, z) 
PP(x, z) 
PPi(x, z) 

PP(x, z) 

PPi(y, z) DR(x, z) 
DR(x, z) 
PO(x, z) 
PPi(x, z) 

PPi(x, z) PPi(x, z) T(x, z) 

Figure 1. RCC-8 relations (cf. the long names in table 1)

(T(x, z) ≡def {DR(x, z), PO(x, z), EQ(x, z), PP(x, z), PPi(x, z)}) 

relationship between the RCC-8 calculus and OWL DL they 
extend the latter with the ability to define reflexive roles. The 
extension of OWL DL with a reflexive property is motivated by 
the requirement that such a property, in addition to the transitive 
one, is needed in order to describe the accessibility relation. In 
order to represent RCC-8 knowledge bases the authors use a 
translation in which regions are expressed as non-empty regular 
closed sets. The RCC-8 relations are then translated into (sets of) 
concept axioms in OWL DL. The classes denoted by the 
introduced concepts are instantiated by asserting for each concept 
an individual in the ABox in order to ensure that the classes 
cannot be empty. This approach requires only a minimal 
extension to OWL DL which has been considered in the draft to 
OWL 1.1 [7]. However, the notion of regions as sets in the 
abstract object domain prevents RCC from effectively combining 
with domain ontologies. The reason for this is that OWL DL 
requires type separation: a class cannot also be an individual (or a 
property) [14]. Yet, in order to classify regions in a domain 
ontology they must be represented as individuals, and not as 
concepts. 

It seems to be more intuitive to define the RCC relations in terms 
of role descriptions than to translate them into concept axioms. 
Since current OWL does not provide constructors for role 
descriptions (apart from inverse), the underlying description 
logics have to be extended with these constructors. In [12] it is 
shown that the extension of SHIQ with complex role inclusion 
axioms of the form S  T  R is undecidable, even when these 
axioms are restricted to the forms S  T  S or T  S  S, but that 
decidability can be regained by further restricting them to be 
acyclic. Complex role inclusion axioms of the unrestricted form 
are supported by the description logic SROIQ which serves as a 
logical basis for OWL 1.1 [10]. However, in order to axiomatize 
the composition of RCC relations, a language must support an 
extension of the unrestricted form of role inclusion axioms, 
namely S  T  R1  …  Rn, as can be seen in table 2 for RCC-
5. If decidability should be preserved, complex role inclusion 
axioms are, therefore, not a solution to the translation problem of 
RCC. Axioms defining the basic RCC relations require additional 
role constructors such as intersection and complement. Extensions 
of SHIQ with these kinds of role constructors have, to our 
knowledge, not been investigated so far. SROIQ supports 
negation of roles (i.e. complement) but not intersection. 

In [3] it is proposed to encode spatial inferences in the Semantic 
Web Rule Language (SWRL) [11]. Even though not explicitly 



mentioned, the examples are provided in a RCC-like style. SWRL 
uses Horn-like rules which are combined with OWL DL (and 
OWL Lite). Horn rules do not allow complex heads (which refer 
to the expressions on the right hand side of the implication 
connective). However, complex heads in terms of disjunctions are 
required in order to formalize the RCC composition axioms (cf. 
section 2). 

4. COMBINING RCC WITH OWL DL 
Considering the result of the review of existing approaches we are 
combining RCC and OWL at the level of the knowledge 
representation system and not at the level of the formalisms. This 
implies that the architecture of a knowledge representation system 
based on DL is extended with a RCCBox. A detailed account of 
the resulting hybrid knowledge representation system is provided 
in [9]. 

The RCCBox contains the definitions of the RCC relations as 
introduced in section 2 and the composition tables for RCC-1, 
RCC-2, RCC-3, RCC-5 and RCC-8. The reasoner uses these 
definitions together with selected role assertions in the ABox in 
order to calculate the spatial relations holding between individual 
regions, and it uses the composition tables in order to check 
spatial consistency of the ABox. This implies that the names of 
the relations have previously been introduced as role names in the 
TBox of the knowledge base. Table 3 shows the terminology 
introduced in the TBox of the knowledge base with our sample 
ontology. The DL expressivity of the ontology is that of ALHI. 

The numbered axioms in table 3 introduce the relations of the 
various RCC species as a hierarchy of roles (cf. section 2): RCC-1 
≡ {1}, RCC-2 ≡ {2, 3}, RCC-3 ≡ {3, 4, 5}, RCC-5 ≡ {3, 5, 6, 7, 
8}, RCC-8 ≡ {5, 8, 9, 10, 11, 12, 13, 14}. The unnumbered 
axioms introduce the concept Region as subsumed by the universal 
concept; they state that regions are spatially related to each other, 
define the symmetric property of the role connectsWith and the 
inverse roles. 
Note that the terminology does not provide sufficient definitions 
of the RCC relations except for the inverses. It rather states 
necessary conditions. For instance, the terminology states that the 
role discreteFrom is included in (or subsumed by) the role 
spatiallyRelated (3) which also applies to connectsWith. Instead, a 
sufficient definition must state that discreteFrom is NOT overlaps 
(cf. table 1). This cannot be put in terms of OWL DL, since 
negation of roles is not permitted. 

Even though, in principle, all RCC relations can be geometrically 
computed and asserted in the ABox of an OWL DL knowledge 
base, it is not favorable to do so for at least two reasons. First, 
asserting all relations holding between any two regions easily 
results in a very large knowledge base, thereby bearing on the 
performance of the system. Second, as discussed in section 3, an 
OWL reasoner will be unable to check the consistency of the 
knowledge base w.r.t. spatial references, because the inferences 
implied by the entries in the RCC composition tables cannot be 
put in terms of OWL DL axioms [12]. For these reasons we argue 
in favor of a minimal representation in the ABox of an OWL DL 
knowledge base and suggest to calculate or infer those relations, 
which are not represented, only when requested at runtime. There 
are two different approaches to a minimal representation which 
shall be explored in the following section: 

1. Asserting the primitive RCC relation connectsWith for all 
pairs of regions for which this relation holds and calculating  

Table 3. Terminology of our knowledge base in ALHI 

 Region  F RegionI ⊆ ΔI

1 spatiallyRelated spatiallyRelatedI ⊆ ΔI × ΔI

 ∃spatiallyRelated.F  Region {a ∈ ΔI | ∃b. (a, b) ∈ 
spatiallyRelatedI} 
⊆ RegionI

 F  ∀spatiallyRelated.Region ΔI ⊆ {a ∈ ΔI | ∀b. (a, b) ∈ 
spatiallyRelatedI 
→ b ∈ RegionI} 

 connectsWith  spatiallyRelated connectsWithI ⊆ spatiallyRelatedI

 connectsWith  −connectsWith {(a, b) | (a, b) ∈ connectsWithI 
→ (b, a) ∈ connectsWithI} 

 −connectsWith  connectsWith {(a, b) | (b, a) ∈ connectsWithI 

→ (a, b) ∈ connectsWithI} 
2 overlaps  spatiallyRelated overlapsI ⊆ spatiallyRelatedI

 overlaps  connectsWith overlapsI ⊆ connectsWithI

3 discreteFrom  spatiallyRelated discreteFromI ⊆ spatiallyRelatedI

4 overlapsNotEqual  overlaps overlapsNotEqualI ⊆ overlapsI

5 equalTo  overlaps equalToI ⊆ overlapsI

6 properPartOf  overlapsNotEqual properPartOfI ⊆ overlapsNotEqualI
7 inverseProperPartOf  

overlapsNotEqual 
inverseProperPartOfI
⊆ overlapsNotEqualI

 inverseProperPartOf ≡ 
−properPartOf 

inverseProperPartOfI
= −(properPartOf)I

8 partiallyOverlaps  
overlapsNotEqual 

partiallyOverlapsI

⊆ overlapsNotEqualI
9 tangentialProperPartOf  

properPartOf 
tangentialProperPartOfI
⊆ properPartOfI

10 nonTangentialProperPartOf 
 properPartOf 

nonTangentialProperPartOfI
⊆ properPartOfI

11 inverseTangentialProperPartOf 
 inverseProperPartOf 

inverseTangentialProperPartOfI 
⊆ inverseProperPartOfI

 inverseTangentialProperPartOf 
≡ −tangentialProperPartOf 

inverseTangentialProperPartOfI 

= −(tangentialProperPartOf)I
12 inverseNonTangentialProperPartOf 

 inverseProperPartOf 
inverseNonTangentialProperPartOfI 
⊆ inverseProperPartOfI

 inverseNonTangentialProperPartOf 
≡ −nonTangentialProperPartOf 

inverseNonTangentialProperPartOfI 

= −(nonTangentialProperPartOf)I
13 externallyConnectedTo  

discreteFrom 
externallyConnectedToI

⊆ discreteFromI

 externallyConnectedTo  
connectsWith 

externallyConnectedToI

⊆ connectsWithI

14 disconnectedFrom  discreteFrom disconnectedFromI ⊆ discreteFromI

the relations of the different RCC species, when requested, at 
run time by using their definitions in the RCCBox. 

2. Asserting the RCC-8 relations for all pairs of connecting 
regions and, when requested, inferring from them the more 
general relations of the other RCC species at runtime by using 
the respective OWL DL axioms in the TBox. Note that this 
approach does not fulfill the desideratum of generating a 
knowledge base which can be checked also for spatial 
consistency by an OWL reasoner.  

5. REPRESENTING RCC IN OWL DL 
5.1 Asserting the Primitive RCC Relation 
The relation P(x, y) (“x is a part of y”) plays a key role in the 
definitions of the RCC relations (cf. table 1). Therefore, the first 
part of our exploration is limited to this relation: only if P(x, y) 
can be reliably calculated, that is by a sound and complete 
formalism, the calculation of the remaining relations is expected 



to be sound and complete. The theory defines the relation P(x, y) 
as follows: 

P(x, y) ≡def ∀z[C(z, x) → C(z, y)]. 

Note that from an epistemic viewpoint this definition has the form 
of a universal proposition. It can, therefore, not be empirically 
verified but only falsified. It is not possible to test for the infinite 
number of all imaginable regions z connecting with x if they also 
connect with y. Conversely, a single observation of a region z 
connecting with x but not with y is sufficient to falsify the 
hypothesis that x is a part of y. Following this line of 
argumentation a calculus for P(x, y) reasoning about a finite data 
structure is not expected to be sound in a formal sense. Instead the 
question is whether it is complete or not and how good it 
approximates the spatial setting (the latter will be explored in 
section 5.3).2 The following formula adapts the original definition 
to a finite data structure: 

P(x, y) = zi[C(zi, x) → C(zi, y)] (1)

with 1 ≤ i ≤ n, n the number of regions represented. 

In the minimum case the region x connects only with itself 
(remember that the relation C is by definition reflexive) and it 
holds that x = y = z. In the maximum case all regions, including x 
(y, respectively) connect with x (y, respectively). Intuitively, the 
calculation of P(x, y) is expected to be more precise with a high 
number of regions zi represented. 
The question whether a calculus using formula (1) is complete or 
not can be answered by referring to the reflexive and symmetric 
properties of the primitive relation C(x, y). If z = y and x connects 
with y the formula C(y, x) → C(y, y) ≡ C(x, y) → C(y, y) evaluates 
to true for P(x, y). Thus, the condition that x connects with y is 
sufficient for hypothesizing that x is a part of y. This means that a 
calculus using formula (1) is expected to be complete in a 
practical application. 

5.2 Asserting the RCC-8 Relations 
The inferences from the RCC-8 relations asserted between the 
connecting regions in the ABox of the knowledge base to 
relations of any of the four other RCC species share the uniform 
pattern of the logical modus ponens: 

[(RRCC-i+  RRCC-i) ∧ RRCC-i+(x, y)] → RRCC-i(x, y) (2)

where RCC-i+ denotes the RCC species from which is inferred 
and RCC-i the species to which is inferred with i+, i ∈ {1, 2, 3, 5, 
8} and i+ > i. Note that because of the transitive property of the 
inclusion operator in OWL DL the following holds: 

((R(RCC-i+)+  RRCC-i+) ∧ (RRCC-i+  RRCC-i)) → R(RCC-i+)+  RRCC-i. 

Different from (1) formula (2) refers to an inference pattern which 
is quite common in description logics (including OWL DL). 
Unlike (1) it can, therefore, be processed by any OWL reasoner. 
Since the soundness and completeness of reasoning services for a 
great variety of description logics – including OWL DL – have 
                                                                 
2 Table 1 shows that, if P(x, y) were asserted for all pairs of 

regions for which this relation holds (and not C(x, y)), there 
would be a similar problem with verifying the existential 
proposition used to define O(x, y). 

been proven [1], we expect inferences with formula (2) to be 
sound and complete in a practical application. 

5.3 Applying the Two Approaches 
In order to demonstrate the theoretical results obtained with the 
two approaches to a representation of RCC in OWL, we use a 
sample of 44 two-dimensional spatial regions (polygons) from 
different GIS layers in the canton of Zurich (cf. figure 2). The 
regions are asserted as individuals in the ABox of our OWL DL 
knowledge base. The connections between them – which were 
identified by cartographic analysis – are asserted as role 
assertions of type C(x, y) for calculation with formula (1) or as 
role assertions in terms of the RCC-8 relations for inferences with 
formula (2). Overall, there are 262 relations asserted in our 
sample. The OWL reasoner Pellet (version 1.4) is used in order to 
access and manipulate the knowledge base. An additional 
reasoner used in order to compute formula (1) is programmed in 
Java. It accesses the knowledge base by means of standard OWL 
API. 

Using formula (1) the RCC reasoner calculates 153 relations of 
type P(x, y). The cartographic evaluation results in 27 relations 
being falsely calculated as P(x, y) whereas they are relations of 
type EC(x, y). All relations of type P(x, y) verified by cartography 
are identified as such. As expected, the calculation with formula 
(1) is complete but not sound in our sample. 

To give an example, one of the relations of type EC(x, y) which is 
falsely calculated as P(x, y) refers to the relation between 
Geroldswil and Oetwil (cf. figure 2). Since all regions connecting 
with Geroldswil also connect with Oetwil the relation between them 
is (falsely!) assumed to be of type P(x, y). As explained above, 
this is neither a shortcoming of the calculus nor of the theory but a 
result of the finite number of regions represented. If, for instance, 
the region in the east of Geroldswil were split into two similar sub 
regions and the southerly sub region only connected with 
Geroldswil but not with Oetwil, formula (1) would evaluate to false 
in this modified sample. That is, the hypothesis that P(Geroldswil, 
Oetwil) holds would be falsified. 

Figure 2. Regions in the canton of Zurich
The dark grey shaded region depicts Albiskette-Reppischtal, a 
biotope of national interest. Regions with bold borderlines depict 
districts. Regions with regular borderlines depict communes. Note 



that the district of Zurich and the commune of Zurich share the 
same geometry, in terms of RCC: EQ(Bezirk_Zürich, Zürich). 

Using formula (2) the OWL reasoner properly infers the 126 
relations of type P(x, y) – calculated as EQ(x, y) ∨ PP(x, y) (cf. 
table 1) – from the RCC-8 relations asserted in our sample. It 
further properly infers the less specific RCC-5, RCC-3, RCC-2 
and RCC-1 relations in a number of spot samples. As expected the 
reasoning service is sound and complete in these samples. Since 
reasoning services based on OWL DL are proven to be sound and 
complete, this part of our exploration confirms the OWL DL 
legality of our representation and the conformance of the OWL 
reasoner with the OWL DL specification. 

To give an example, the RCC-3 relation overlapsNotEqual(Zürich, 
Albiskette-Reppischtal), which is not asserted in the knowledge 
base, is inferred from the asserted RCC-8 relation 
partiallyOverlaps(Zürich, Albiskette-Reppischtal) using the theorem 
[(partiallyOverlaps  overlapsNotEqual) ∧ partiallyOverlaps(Zürich, 
Albiskette-Reppischtal)] → overlapsNotEqual(Zürich, Albiskette-
Reppischtal). 

6. DISCUSSION 
Our exploration shows that the RCC-8 relations qualify for a 
minimal representation in order to effectively combine RCC with 
OWL DL in practical applications. Based on the 262 asserted 
relations, the OWL reasoner infers a total of 2228 relations. Thus 
the number of relations asserted as a minimal representation in 
our sample is roughly one tenth of the number of a full 
representation without counting the relations between regions 
which are not connected. The high number of inferred relations 
can be explained by the fact that for each connecting pair of 
regions the valid relations in all five RCC species plus the 
primitive relation C(x, y) are inferred. The high number is also a 
result of the inverses being inferred where these are defined and 
the symmetric relations being inferred from both ends. 

7. CONCLUSION 
The results obtained in section 5 suggest that the second approach 
can be applied to small applications in general. It requires that the 
relations between connecting regions are asserted in terms of 
RCC-8 in the ABox at the outset of the knowledge base. This 
implies that these relations can be easily determined in practical 
applications. However, this is not the case in large applications 
such as those underlying the bilingual ontology introduced in 
section 1. In these applications the identification of spatial 
relations involves a series of geometrical computations and 
relational operations. With the objective of streamlining this 
process, future work will explore methods for the calculation or 
approximation of spatial settings based on information which can 
be easily accessed from geographic information systems. 
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