The drought of 2018 and its effects on bark beetle outbreaks in Swiss forests: How can remote sensing help?

Achilleas Psomas
WSL Remote Sensing Group

Introduction

- In 2018 Switzerland experienced one of the lowest precipitation in spring and summer for almost 100 years (MeteoSwiss)
- While not as severe, the drought was in many places (especially in eastern Switzerland) comparable to 2003

Effects of the 2018 drought-Effects on forest

 A large number of trees showed early signs of canopy browning and leaf shedding due to drought stress

Motivation

 Acute drought events have shown to significantly increase beetle population growth and thus very likely lead to bark beetle mass outbreaks (Netherer et al. 2019)

Part 1

- Can we use remote sensing data to map drought stress on forests habitats?
- Is there a link between drought stress in 2018 and bark beetle outbreaks on forests ecosystems of Switzerland?

Part 2

 What is the potential of remote sensing for detecting early beetle infestations on drought stress forest regions?

Part 1

Objective

 Can we use remote sensing data to map drought stress on forests habitats?

Methodology

- Used the Normalized Difference Water Index (NDWI)
- Calculated anomalies of NDWI for 2018 compared to a given reference period of "normality" using Google Earth Engine
 - Sentinel-2: 2016-2017, 10m spatial resolution
 - When in 2018? → July 20th-August 25th

$$NDWI_{anomaly} = \frac{NDWI_{2018} - NDWI_{Reference\ Period}}{NDWI_SD_{Reference\ Period}}$$

NDWI 2018 anomalies as a proxy of drought stress

NDWI Anomalies 2018

NDWI 2018 anomalies as a proxy of drought stress

NDWI Anomalies for 2018 - Drought stress

RS Derived Drought Stress

Actual Conditions 2018

Objective

Is there a link between drought stress in 2018 and bark beetle outbreaks on forests ecosystems of Switzerland?

Drought 2018 - Bark beetles - Examples

- **Purple**: Forest locations under severe drought stress
- Yellow: Actual bark beetle infestation locations

Drought 2018 – Bark beetles

Stress – No bark Beetles

No stress – bark Beetles

 Large majority of bark beetle outbreaks were observed in areas that were under drought stress in 2018

<u>Summary – Conclusions</u>

- Analyses showed the potential of Sentinel-2 time series (2018 NDWI-anomalies) as a proxy of drought stress on forest habitats
- We saw a strong correlation between drought stress and bark beetle outbreaks
- This information could potentially be used to understand and even predict bark beetle outbreaks
- Drought stress facilitates but does not mean imminent bark beetle attacks.
 Outbreaks were also observed in areas that were not under drought stress in 2018
- With high frequency and rapid availability of Sentinel-2 data these results can be considered "near real-time" and be made available to stakeholders

Part 2

Introduction - Objectives

- We focused primarily on drought stress regions where bark beetles outbreaks have been reported. Can we detect early bark beetle infestation with remote sensing?
- Major factors influencing the accuracy of mapping green-attack stage of bark beetle infestations with RS (Zabihi et al., 2021):
 - Spatial resolution (less than 4 m)
 - Temporal resolution (daily to max weekly)
- Several studies are performed on monoculture stands rather than on forest mixtures. Thus accuracies of early infestations are ofter reduced for mixed pixels or at forest edges

Methodology

- PlanetScope data
 - Spatial resolution of 3m (GSD 3.7-4.2)
 - Daily revisit time (August 2021)

8-spectral bands (RGB, NIR, Red Edge, Coastal blue, Green, yellow)
 from March 2021 onwards (SuperDove sensor)

21-April-2022, WSL, Birmensdorf

planet.

PlanetScope Imagery

Advantages

- High spatial resolution (3m) compared to Sentinel-2 (10/20m)
- High revisiting time compared to Sentinel-2 (3-5 days)
- Red edge spectral band
- Data harmonised to match Sentinel-2
- Direct delivery/ingestion to Google Earth Engine for analyses

Disadvantages

- No spectral bands in the SWIR
- Cloud/haze masks and surface reflectance retrieval needs futher improvement
- Commercial company data NOT free

<u>Methodology</u>

- PlanetScope data 8-bands and Sentinel-2 for 2020-2021 (April-October)
- Case study Canton of Bern
- 4096 bark beetle recording (2019-2021)

Normalised Difference Red Edge Index (NDRE) time series calculated in

Google Earth Engine

Examples – Sensor comparison

Examples – Large area beetle outbreak

Approximately 150 trees removed in July 2020

Examples – Large area beetle outbreak

Examples – Small area beetle outbreak

Examples – Small area beetle outbreak

<u>Summary – Conclusions</u>

- Initial analyses show the potential of PlanetScope time series data for identifying bark beetle outbreaks in Swiss forests
- PlanetScope data are especially helpful in the detection of small scale outbreaks and/or in mixed forest stands where high spatial resolution is required
- PlanetScope data should be used in synergy with Sentinel-2
- 8-band availability (NDRE) limited to 2021 onwards
- PlanetScope is a commercial company

Thank you for your attention

<u>Spectral Differences – Bark beetles</u>

- Challenge: We have the bark beetle attacked plot. What about the "healthy" not attacked plots
- **Hypothesis:** Choose forest areas adjacent to attacked plots (100-250m) that have not been identified as attacked that fulfill forest species criteria (spruce). Use these are a reference of "healthy" plots.

