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FORWIND-affected area

Windstorm and strong rainfall

Extreme cyclones play an important. The increase create
high-impact weather events may cause windstorms,
storm surges, landslides and flooding that impact on
Forests Ecosystems

can potentially hit any
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Windstorm damage mapping
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e Airbone LiDAR data, High spatial resolution
images high costs

e Radar — not accurate border of the
damaged area

We move to optical remote sensing data



Alms

* Map forest damage area quickly
* Area estimation with standard error of damaged area

* How many months we need using S2 data to map with high accuracy
windstorm damaged area?
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Tested algorithms - Continuous Change Detection
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Detect interannual changes using trajectory analysis
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Zhe Zhu™

 Breaks for Additive Seasonal and Trend Iterative Algorithm (BEAST)

Wu, L.; Li, Z,; Liu, X,; Zhu, L.; Tang, Y.; Zhang, B.; Xu, B.; Liu, M.; Meng, Y.; Liu, B.
Multi-type forest change detection using BEFAST and monthly landsat time series for

monitoring spatiotemporal dynamics of forests in subtropical wetland. Remote Sens.
2020, 12, 1-33, doi:10.3390/rs12020341.

* Continuous Change Detection and Classification Algorithm

Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover
using all available Landsat data. Remote Sens. Environ. 2014, 144, 152-171,
doi:10.1016/j.rse.2014.01.011

These methods are able to split the time series into three adaptative components (i.e., trend, seasonal and
remainder)



Tested algorithms - Continuous Change Detection

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing P

Those that are able to detect interannual changes using

— trajectory analysis appears to be adequate to detect
oreprecessing, aiorithns, and appicarions o @ interannual changes of forest area

Zhe Zhu
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nate Science Center, Texas Te

 Breaks for Additive Seasonal and Trend Iterative Algorithm (BEAST)

« Continuous Change Detection and Classification Algorithm

The two algorithms use two different strategies to decompose the NBR TS (i.e., number of

continues persistent deviation observation from seasonality to detect changes and
classification)



Remote Sensing time series
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Training dataset

- forest polygons covering both damaged and undamaged

areas. Forzieri et al. (2020)

- extracted at least one damaged polygon for each cell of the

grid of 30 km x 30 km.
- the same cell manually photointerpreted a total of 100
undamaged forest polygons

Validation dataset

-the Italian Inventory of Land Use (IUTI - Inventario
dell’Uso delle Terre d’ltalia

128.548 IUTI Point in the area

-we extracted a sub-sample of 700 points on the
basis of a stratified random sampling

- For each Province we extracted a different number
of point of the hectares of damage reported by local
authorities (minimum point for province 10)
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Probability-Based stratified estimators

the estimate of the total proportion of the area in the damaged class can be derived from the confusion matrix using the validation
dataset as reference (Table 1), and is given by:

p=Xi1wjP;

where w; is the proportion of the map in each map classes (i.e., w; damaged and w, undamaged forest), while the variance of esteems of
the total proportion of the area in damaged class is:

Var(p) = XL, wi - Var(;)
On the basis of the confusion matrix we can produce a formal estimation of the damaged area as:

Adamaged = Ator P -
Moreover, based on p and Var(p) it is possible to calculate a 95% confidence interval for damaged area estimation, that is

Adamaged ‘pt2- Kdamaged "V Va\r(f))
where Agamaged is the mapped damaged forest area.

In addition, we calculated the standard error (SE) and the percentage SE (SE,,) of the area estimates as:

Table 1. Confusion matrix and estimators
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Results

800000

600000

400000

00000¢s 0000005

o
=)
il=)
S
S
53]
Q 8
nm o
S £ =
g )
X &
L
o ™M
==
= =)
ZZ
£
5 £
5
—
S o
—-= O
©
£
g2
8 0 bmn
BE 2
oo X
Qo Q
aQ
M ©
EE §
w o =
pose .
<< T S
24 & S
oo QP Q
S o R 2
FF.m. <
20 & @
e E
©
2 eEET
o 885
o
si i

00000¢S



Results

Algorithm Month A gamage SE(Adamage) SE% Imean
from the [ha] [ha] -1 |:||:| -
storm

1 11119 26345.6 23693 482 0.15 0.18 0.17
2 12369 23246.7 18793 514 0.21 0.2 0.2

3 20377 22354.1 109.7  60.2 0.37 0.46 0.42

4 22614 199922.9 88 62.1 0.39 0.46 0.42

5 27527 14802.1 53.77  67.2 0.46 0.49 0.47 0.75-

6 36766 13149.1 3576 752 0.57 0.7 0.64

7 38416 3725.3 9.69 89.7 0.87 0.87 0.83 .

8 38819 405.4 1.04 97.1 0.95 0.95 0.95 c Ajg[]rrthm
9 40018 402.1 1 97.8 0.95 0.97 0.96 T

10 39931 346.5 0.87 98 095 097 097 © (.30~ BEAST
11 40126 346.5 0.86 98.1 0.96 0.98 0.97 £

12 39954 238.2 0.6 98.4 0.97 0.98 0.97 o CCOe
1 10203 28631 2806 435 0.09 0.18 0.09

2 11388 28099 2467 443 0.1 0.1 0.1

3 13160 26560 201.8  46.4 0.12 0.12 0.12 0.25-

4 14268 21110 148 52 0.18 0.16 0.17

5 25349 12041 47.5 69 0.49 0.49 0.47

6 32355 10295 31.8 75.5 0.59 0.63 0.61

7 39204 3254.52 8.3 91.1 0.82 0.9 0.86

8 38632 405.4 1.04 97 0.95 0.94 0.95 0.00-

9 40008 402.1 1 97.8 0.95 0.97 0.96 : HEEEEEEEEE NN R e

10 39929 346.5 0.87 98 0.95 0.97 0.97

11 40116 346.5 0.86 98.1 95.8 98.1 0.97 T2 3 4 5 6 7 8 9 101 12

12 39951 238.2 0.6 984 967 981 097 Months after VAIA storm



Discussion

« S2imagery is adequate to map damaged forest area. The most accurate results can be obtained in spring-summer
(i.e., after 7 months after the storm), independently of the CDC algorithm used

 was not possible to produce an accurate map 1-6 months after the storm (November 2018 — April 2019)

 Analyzing the seasonality and the remainder components of the NBR TS (Figure 3) we observed a persistent
deviation of NBR trajectory from the seasonality between May 2019 and October 2019
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Limitation

« coniferous forests fallen trees remained green on the ground for a couple of months after the storm

* in broadleaves forests (i.e., mainly beech) differences in photosynthetic activities in winter between fallen
trees and not damaged trees

« snow cover in Alpine regions introduced noise in spectral trajectories, also applying a despike approach in
correspondence of NDSI high values

 optical images acquired in mountains regions shadows due to steep slopes which introduce large noises
in NBR spectral trajectories that limit the accuracy of BEAST and CCDC methods

we found that 75% of errors are located in an area
with steep terrains, while correctly classified areas
are concentrated in the highlands or wide valleys
where slope shadows are less present
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Differences between the two tested algorithms

grmean

to decompose the NBR TS (i.e., number of continues persistent deviation observation from seasonality to detect

changes and classification) and this can be the cause of the disagreement between the results obtained by
BEAST and CCDC for the early months after the storm (K<0.3),
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The estimates done by local authorities immediately after the
storm is within the confidence intervals of the estimates we
obtained with the two algorithms.

7 months after the storm (i.e., from May to October 2019) the area
we estimate is slightly smaller than that one reported by local
authorities

In fact, we found differences between 4109 ha and 2571 ha for
BEAST and between 3321 ha and 2574 ha for CCDC
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