Domain agnostic online semantic segmentation for multi-dimensional time series Shaghayegh Gharghabi¹ · Chin-Chia Michael Yeh¹ · Yifei Ding¹ · Wei Ding² · Paul Hibbing³ · Samuel LaMunion³ · Andrew Kaplan³ · Scott E. Crouter³ · Eamonn Keogh¹ ### Remote Sensing of Environment Volume 114, Issue 12, 15 December 2010, Pages 2897-2910 Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms Robert E. Kennedy ^a $\stackrel{\triangle}{\sim}$ Marren B. Cohen ^b Contents lists available at ScienceDirect Remote Sensing of Environment change from 1984 to 2012 using Landsat-derived time-series metrics Txomin Hermosilla ^{a,*}, Michael A. Wulder ^b, Joanne C. White ^b, Nicholas C. Coops ^a, Geordie W. Hobart ^b Integrated Remote Sensing Studio, Department of Forest Resources Management, University of British Columbia, 2424 Main Mall, Vancouver. British Columbia V6T 1Z4. Canada Regional detection, characterization, and attribution of annual forest #### Contents lists available at ScienceDirect Remote Sensing of Environment An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites Txomin Hermosilla ^{a,*}, Michael A. Wulder ^b, Joanne C. White ^b, Nicholas C. Coops ^a, Geordie W. Hobart ^b Integrated Remote Sensing Studio, Department of Forest Resources Management, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada ## **Mapping the forest disturbance regimes of Europe** Cornelius Senf ≥ & Rupert Seidl ## nature sustainability ### High-Resolution Global Maps of 21st-Century Forest Cover Change M. C. Hansen^{1,*}, P. V. Potapov¹, R. Moore², M. Hancher², S. A. Turubanova¹, A. Tyukavina¹, D. Thau², S. V. Stehman³, S. J. G... + See all authors and affiliations Science 15 Nov 2013: Vol. 342, Issue 6160, pp. 850-853 DOI: 10.1126/science.1244693 ### Differences between Boreal forests and Mediterranean coppice forests recovery rates **RESEARCH PAPER** Monitoring clearcutting and subsequent rapid recovery in Mediterranean coppice forests with Landsat time series Gherardo Chirici¹ · Francesca Giannetti¹ · Erica Mazza¹ · Saverio Francini¹ · Davide Travaglini¹ · Raffaello Pegna¹ · Joanne C. White² # Two Thresholds Method (TTM) Article A New Method for Automated Clearcut Disturbance Detection in Mediterranean Coppice Forests Using Landsat Time Series Francesca Giannetti ^{1,*}, Raffaello Pegna ¹, Saverio Francini ¹, Ronald E. McRoberts ^{2,3}, Davide Travaglini ¹, Marco Marchetti ⁴, Giuseppe Scarascia Mugnozza ⁵ and Gherardo Chirici ¹ | | True | False | False | True | |---------|---------------|---------------|---------------|---------------| | Methods | Negatives(ha) | Negatives(ha) | Positives(ha) | Positives(ha) | | Hansen | 125873.4 | 325.77 | 131.93 | 147.62 | | LT | 125779.3 | 198.28 | 226.05 | 275.11 | | TTM | 125875.4 | 195.25 | 129.99 | 278.14 | | 3I3D | 125884.5 | 143.37 | 120.83 | 330.02 | INTERNATIONAL JOURNAL OF REMOTE SENSING 2021, VOL. 42, NO. 12, 4693-4711 https://doi.org/10.1080/01431161.2021.1899334 The Three Indices Three Dimensions (3I3D) algorithm: a new method for forest disturbance mapping and area estimation based on optical remotely sensed imagery Saverio Francini (D) a,b,c, Ronald E. McRoberts^d, Francesca Giannetti (D) a, Marco Marchetti^b, Giuseppe Scarascia Mugnozza^c, and Gherardo Chirici (D) a # The coming Google Earth Engine - a cloud platform offering planetary-scale analysis capabilities - a multi-petabyte catalog of satellite imagery and geospatial datasets # Why Google Earth Engine? - Huge amount of data - Preprocessing of images already done - Fast - Easy to use - Free # What is Google Earth Engine used for? "analyze forest and water coverage, land use change, or assess the health of agricultural fields, among many other possible analyses." Google Earth Engine: Planetary-scale geospatial analysis for everyone Noel Gorelick ^{a,*}, Matt Hancher ^b, Mike Dixon ^b, Simon Ilyushchenko ^b, David Thau ^b, Rebecca Moore ^b Published in 2017 Cited by 2485 documents ^a Google Switzerland, Brandschenkestrasse 110, Zurich 8002, Switzerland b Google Inc., 1600 Amphitheater Parkway, Mountain View, CA, 94043, USA # Pixel-Based Image Compositing for Large-Area Dense Time Series Applications and Science J. C. White^{1,*}, M. A. Wulder¹, G. W. Hobart¹, J. E. Luther², T. Hermosilla³, P. Griffiths⁴, N. C. Coops³, R. J. Hall⁵, P. Hostert⁴, A. Dyk¹, and L. Guindon⁶ ## Sentinel-2 images acquired in the last two days ## **BAP** # **DESPIKED** ## **FILLED** The best-available-pixel (BAP) tool you have been waiting for! Implemented on #GoogleEarthEngine (#GEE). #Landsat In #GEEBAP can tune composite parameters, create a #timeseries, set area of interest, AND download surface reflectance outcomes! ### Try it out: code.earthengine.google.com/e27240a92ecf64... You and 7 others 3:00 PM · Apr 29, 2021 · Twitter Web App 102 Retweets 10 Quote Tweets 376 Likes The number of processed Sentinel-2 images was 17592: 5100 acquired in 2017, 6547 in 2018 and 5945 in 2019. Contents lists available at ScienceDirect ### International Journal of Applied Earth Observations and Geoinformation journal homepage: www.elsevier.com/locate/jag # An open science and open data approach for the statistically robust estimation of forest disturbance areas Saverio Francini ^{a,b,c,*}, Ronald E. McRoberts ^d, Giovanni D'Amico ^a, Nicholas C. Coops ^e, Txomin Hermosilla ^f, Joanne C. White ^f, Michael A. Wulder ^f, Marco Marchetti ^b, Giuseppe Scarascia Mugnozza ^c, Gherardo Chirici ^a ^a Department of Agriculture, Food, Environment and Forestry, Università degli Studi di Firenze, Via San Bonaventura, 13, 50145 Firenze, Italy ^b Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Pesche, Isernia, Italy ^c Dipartimento per l'Innovazione dei sistemi Biologici, Agroalimentari e Forestali, Università degli Studi della Tuscia, Via San Camillo de Lellis, Viterbo, Italy ^d Department of Forest Resources, University of Minnesota, Saint Paul, MN 55108, USA e Integrated Remote Sensing Studio, Department of Forest Resources Management, University of British Columbia, Vancouver, BC, Canada f Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, Victoria, BC, Canada