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Promise of the point cloud …
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Global Spectrum of Canopy Structure
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2.3 Functional traits and diversity metrics 

2.3.1 Functional traits 

It is crucial to choose appropriate traits to calculate functional diversity metrics. These traits 

should not be too highly correlated to each other and represent different facets of forest 

properties (Zheng et al., 2021). To assess functional richness and divergence, three 

morphological forest traits were chosen. We used the same morphological traits as Schneider 

et al. (Schneider et al., 2017) which are canopy height (CH), foliage height diversity (FHD), 

and plant area index (PAI).  

These three morphological traits are relevant for plant ecosystem function and can be 

assessed with airborne remote sensing methods (Homolová et al., 2013; Schneider et al., 2017, 

2014). Our selected morphological traits relate to the three primary components of variation in 

canopy space: canopy height, vertical layering and openness (Fahey et al., 2019). These 

structural axes have been linked to ecosystem functioning and are commonly used to 

differentiate between vegetation types. They have also been used to characterize the structural 

diversity of the canopy (Coops et al., 2016; Zheng et al., 2021). Figure 2.3 represents the 

conceptual model of the canopy structure introduced by Fahey et al. (2019). 

 
Figure 2.3: Conceptual model of the canopy structure space illustrating (a) the global spectrum and (b) 
the temperate forest structure spectrum  (illustration by Fahey et al. (2019)). 

 

Fahey, R. T., Atkins, J. W., Gough, C. M., Hardiman, B. S., Nave, L. E., 
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(2019). Defining a spectrum of integrative trait-based vegetation 
canopy structural types. Ecology Letters, 22(12):2049–2059.
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Mapping the functional richness of forests structural parameters
(a)

(b)

F. D. Schneider, F. Morsdorf, B. Schmid, 
O. L. Petchey, A. Hueni, D. S. Schimel, 
and M. E. Schaepman, “Mapping 
functional diversity from remotely 
sensed morphological and physiological 
forest traits,” Nature Communications, 
vol. 8, no. 1, p. 1441, 2017.

richness is calculated as the convex hull volume of the community
niche42, as illustrated in Fig. 2a for an assemblage of pixels
mapped in the morphological trait space. It corresponds to the
niche extent and defines the outer boundary of the occupied
functional space. A disadvantage of this measure may be a strong
influence by extreme values. In contrast, functional divergence
and evenness describe how sample points are distributed within
the community niche (Fig. 2b, c). Functional divergence is a
measure of how sample points are spread with regard to the mean
distance to the centre of gravity, whereas functional evenness
indicates how evenly traits are distributed with regard to spacing
among similar sample points in functional space. These three
indices have mainly been applied to functional diversity of
plants43, where sample points represent species, with an
increasing number of studies on forest ecosystems44. However,
this concept has not yet been applied to continuously measured
trait data independent of taxonomy, vegetation units or even
plant individuals. Remote sensing methods offer to measure
functional traits continuously and directly across large spatial
extents. This has a twofold advantage: (1) there is no need to
identify species, vegetation units or individuals and (2) prediction
of ecosystem functions using independently established func-
tional diversity–ecosystem functioning relationships are con-
sistent across large scales. In contrast, recent efforts to map forest
biodiversity have used forest functional classes as remotely sensed
vegetation units with constant trait values assigned to these
units35.

Our second aim is to test the consistency of our method. For
this, we compare the results obtained with the two independent
sets of traits. Morphological diversity was found to be the main
driver of forest productivity in poly- and monocultures of mature
forests45–47, whereas physiological diversity reflects different
resource allocation strategies to maximize light capture and
protective mechanisms and is more closely linked to species
diversity48, 49. Since most functional traits show consistent var-
iation along broad environmental gradients, we expect both
morphological and physiological diversity to show similar pat-
terns at larger scales. For the leaf physiological traits, we also
compare the remotely sensed trait values with those directly
obtained from spectroscopic measurements on single leaves. This
should indicate how well the retrieval method can be scaled from
the leaf to the canopy level. Furthermore, we test the general
agreement of trends in trait relationships between community
weighted means of the functional trait database TRY and the
retrieved traits for communities composed of the 13 tree species
present in our test area.

Finally, we examine scale dependency of different functional
diversity measures. We demonstrate that functional diversity
measures can be quantified at any desired unit area within the
sampled region, limited only by the spatial resolution of the trait
maps. This will allow—in future efforts—for direct and con-
tinuous mapping of functional diversity from space. Functional
diversity, due to redundancy and trait plasticity, may not show
the same increase with area as is typically found for species
richness. Nevertheless, scale dependency of functional diversity
could still lead to scale-dependent functional diversity–ecosystem
functioning relationships. Such effects would be expected if eco-
system functions are not scale-dependent above a certain mini-
mum area, which is likely the case, such as for example for
productivity per area. Studies on spatial patterns and scale
dependency of functional diversity are still sparse50. We expect
functional richness to increase with scale. A strong increase at
small scales would indicate high diversity within communities,
which can mean higher resilience to disturbance51, while an
increase at larger scales would indicate high diversity between
communities. The exact slope and shape of the relationship,
however, cannot be predicted by known species–area relation-
ships, since functional richness is influenced by trait correlations,
redundancies among species and intra-specific trait variation.
Even less is known about other components of functional
diversity. A study based on four plant communities on the San-
torini Archipelago found no relationship with area for functional
divergence and evenness52.

Results
Functional traits. Figure 3 shows the spatial distribution of
morphological and physiological traits, as derived from airborne
laser scanning and airborne imaging spectroscopy, respectively.
Blue areas in the morphological trait map are characterized by
high canopy density, low canopy height and little canopy layering.
When comparing with independent community data, around
83% of these areas are classified as juvenile forest with tree height
below 21 m and diameter at breast height below 30 cm (Supple-
mentary Fig. 1). The largest such area is marked as subregion A,
covering ∼1.4 ha, and is likely affected by disturbance caused by a
winter storm. Physiologically, these patches are characterized by
very high chlorophyll concentration as compared to an undis-
turbed, mature forest canopy.

Larger patches with a dense and closed canopy as well as high
relative chlorophyll and carotenoids content are represented by
pink and orange areas in the morphological and physiological

Richness = 0.22

F
ol

ia
ge

 h
ei

gh
t d

iv
er

si
ty

 [0
–1

]

F
ol

ia
ge

 h
ei

gh
t d

iv
er

si
ty

 [0
–1

]

0.0

0.2

0.4

0.6

0.8

1.0

Divergence = 0.81

0.0

0.2

0.4

0.6

0.8

1.0

Evenness = 0.81

1.0
0.8

0.6F
ol

ia
ge

 h
ei

gh
t d

iv
er

si
ty

 [0
–1

]

0.4
0.0

0.2

0.4

0.6

0.8

1.0

0.2
0.00.00.20.40.60.81.0

Plant area index [0–1] Canopy h
eight [0

–1]
1.0

0.8
0.6

0.4
0.2

0.00.00.20.40.60.81.0

Plant area index [0–1]
0.00.20.40.60.81.0

Plant area index [0–1] Canopy h
eight [0

–1]
1.0

0.8
0.6

0.4
0.2

0.0

Canopy h
eight [0

–1]

b ca

Fig. 2 Three aspects of functional diversity based on morphological forest traits of a circular area with a radius of 120m. The three traits are foliage height
diversity, plant area index and canopy height in relative units from 0 to 1. a The shaded volume is functional richness, b the distance from the surface of the
shaded sphere is functional divergence and c the variation of segment length in the minimum spanning tree is functional evenness
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– Functional richness is computed as convex hull of pixels in 3d feature space 
spanned by the parameter values

– Functional richness shows strong spatial patterns potentially linked to abiotic 
and biotic drivers

– SNF Project “BEF Lägern” (PI Kurt Bollmann, RS PhD Nicole Manser) will 
study these patterns and their linkage with in-situ diversity across trophic 
levels in more detail

4



Monitoring Structural Richness 2014 
- 2019

– ALS is operational in many European 
countries 
– this includes CH, many multi-temporal 

datasets at cantonal and national level
– Difference in structural richness for the 

whole forested area of the Kanton of 
Aargau (1400km2)

– However, some differences might be 
attributed to sensor and survey 
configurations changes…

5

Functional richness difference map

Classified difference map of 
functional richness. It is classified 
using its mean (μFRic = 0.110). Values 
within one standard deviation of 
the observed change in occlusion 
are beige, within two standard 
deviations are light red/blue up to 
four which are dark red/blue. Red 
pixels indicate higher values in 2014, 
blue pixels show higher values in 
2019 compared to the mean.

Coordinates are in the local reference 
system, CH1903+/LV95.
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2014 2019
Altitude 600 1250

Scan Angle ±15 ±30
PRF 300 1000

Beam Divergence 0.5 0.3
Point Density 16 30



Towards monitoring - change between point clouds
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2014 2021



Change between point clouds - 2014 to 2021 (both leaf-off)
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Change between point clouds - 2014 to 2021 (both leaf-off)
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“Persistent scatterer?” - Swissgrid Substation (Kt. AG)

– Surface power switching installations of Swissgrid in Laufenburg are a 
complex 3d structure that did not change between 2014 and 2019
– Canopy height (max and percentiles) do not change much (0.1 m)
– Foliage height diversity is quite robust as well
– PAI changes dramatically between the two acquisitions
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 CH FHD PAI 
 2014 2019 2014 2019 2014 2019 

25th percentile 12.6 12.5 0.297 0.299 0.1983 0.0543 
50th percentile 13.7 13.8 0.52 0.481 0.428 0.168 
75th percentile 15.4 15.4 0.951 1.012 0.85 0.458 

 
Figure A.12: Swissgrid switching substation known as Star of Laufenburg. Used as validation area of 
the traits because it has many masts, lines, etc. having a tree-like structure that were used as persistent 
scatterers. In the top row, the SWISSIMAGE Orthofotos (swisstopo, 2022) of 2014 (left) und 2019 (right) 
and in the bottom row, the boxplots of the three traits and their corresponding statistics are depicted 
before normalization.  
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Ray-tracing of ALS returns for occlusion mapping

– For each ALS pulse, we can 
trace its path through the 3d 
space.

– Voxel grid is populated with 
number of echo or number of 
occlusions.

– Now we know the unknown 
and can exclude voxel with 
different state in occlusion 
from change detection

– Leaf-off data might be better 
suited to detect changes in 
forest structure …
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Daniel Kükenbrink, Reik Leiterer, Fabian D. Schneider, Michael E. Schaepman and Felix 
Morsdorf,Quantification of hidden canopy volume of airborne laser scanning data using a 
voxel traversal algorithm, Remote Sensing of Environment, 2017


 
where ! is the extinction coefficient defined by: 
 
 ! = !!(!, !!)cos !  (2) 
 
where ! is the projection of foliage area that depends on the leaf normal angle (!!) and the incidence angle of 
the laser pulse (!) [7]. For the PAI estimation, Nmiss and Nhit were further weighted according to the number of 
returns registered by the pulse, following the assumption, that a pulse with n returns can be divided into n equal 
parts (e.g. for a pulse with 7 returns, each return counts as 1/7th Nhit). Nmiss and Nhit  were further weighted 
according to their path length through the considered voxel. For the case, where Nmiss is zero, the above model 
saturates. Therefore, Nmiss was replaced by the smallest possible value greater than zero (e.g. 1/7 as the maximum 
number of returns per laser pulse was 7). 

Results and Discussion 
In Figure 1 the voxel classification output of the proposed voxel traversal algorithm is shown for a 300 m 

transect with one voxel depth (voxel dimension = 1x1x1 m). Only voxels observed with a laser return (Nhit) and 
occluded voxels (Nocc) are shown. Occluded voxels are shown in yellow to red. Observed voxels with a 
registered laser return in them are shown in green to blue. The redder the occluded voxels are, the more pulses 
would have theoretically traversed the voxels, if they were not obstructed by the canopy. The bluer the voxels 
are, the more laser returns were registered by the ALS system inside the corresponding voxel. The results for 
both leaf-on and leaf-off conditions are shown. The occluded areas are much more dominant under leaf-on than 
under leaf-off conditions, as the laser pulses are much more obstructed by the denser canopy compared to the  

 

 
Figure 1: Voxel classification result for a 300 m transect with one voxel depth (1 m voxel dimension). Yellow to 
red denotes occluded voxels not visible for the ALS system and green to blue show the number of laser returns 
inside voxels, that were observed from the ALS. Top: Voxel classification for leaf-on condition. Bottom: Voxel 

classification for the same transect in leaf-off condition. Coordinates are in the Swiss national grid CH1903 / 
LV03 

Table 1: Classification of voxel cells (following [6]) 
  Number of  

Returns (Nhit) Penetrations (Nmiss) Occlusions (Nocc) 
Observed >0 >=0 >=0 
Empty =0 >0 >=0 
Hidden =0 =0 >0 
Unobserved =0 =0 =0 

 



Occlusion difference between 2014 and 2019

– Occlusion mapping informs about areas 
with large difference in observed volume.

– Change in 3d structure metrics from such 
areas need to be treated with caution.

– However, occlusion is just one part of the 
problem, the representation of 3D objects 
like trees in the point cloud is another.
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Occlusion maps of Unterwald
Occlusion maps of Unterwald. The 
maps of the two recording years 
are in the top (2014) and middle 
(2019) row. The values describe the 
fraction of occluded canopy volume 
on a 2 x 2 m pixel. 0 means that no 
canopy volume is occluded, 1 
means that the total canopy volume 
is occluded. In the bottom row, the 
difference map is depicted.

Coordinates are in the local 
reference system, CH1903+/LV95.

Occlusion 2014 Occlusion 2019

Occlusion difference
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maps of the two recording years 
are in the top (2014) and middle 
(2019) row. The values describe the 
fraction of occluded canopy volume 
on a 2 x 2 m pixel. 0 means that no 
canopy volume is occluded, 1 
means that the total canopy volume 
is occluded. In the bottom row, the 
difference map is depicted.

Coordinates are in the local 
reference system, CH1903+/LV95.
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Summing Up…

– Point clouds of forests contain a wealth 
of 3d structural information
– but these are impacted by sensor 

and survey configurations …
– … just as any other remote sensing 

technology!
– Change detection using point clouds 

needs to consider this for all but the 
simplest structural metrics (e.g. height)
– but even then, scale matters.

– Monitoring with complex structure 
variables needs more work -
– radiative transfer models will help to 

increase our understanding of laser 
pulse - canopy interactions
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4. Radiative transfer modeling 39

Figure 4.3: Rendered image of virtual forest stand reconstructed based on actual
TLS (tree branches and shoots) and ALS data (tree locations and dimensions).
From Morsdorf et al. (A15 2020). The single trees are represented by 3d architec-
tural tree models, comprising semantics and topology.

However, the first simulations and comparisons with actual EO data showed
that a more direct way of parameterizing the 3d distribution yielded better re-
sults (B16 Schneider et al., 2014), namely the use of voxel grids associated with
a ALS/TLS derived PAI. Many RT models, including the Discrete Anisotropic
Radiative Transfer (DART) model used in many of the studies highlighted in
this thesis, have an internal voxel structure for their simulations, and by di-
rectly parameterizing a voxel grid one can skip the step of semantic labeling of
the point cloud and geometric reconstruction into 3d models, which could in-
troduce errors. As e.g. shown in Abegg et al. (A2 2020b), the latter will introduce
a significant bias for the volume of smaller canopy elements.

Schneider et al. (B16 2014) showed for the first time that a LiDAR and Leaf

Rendered in blender, tree models based on: Eysn, L., Pfeifer, N., Ressl, C., Hollaus, M., Grafl, A., 

Morsdorf, F., Schneider, F. D., Gullien, C., Kükenbrink, D., Leiterer, R., and Schaepman, 
M. E. (2020). Remote Sensing of Plant Biodiversity, book chapter “The laegeren site: An 
augmented forest laboratory: Combining 3-D reconstruction and radiative transfer 
models for trait-based assessment of functional diversity”, pages 83–104. Springer.


